Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,114 +1,114 @@
|
|
1 |
-
# import os
|
2 |
-
|
3 |
-
# os.chdir('naacl-2021-fudge-controlled-generation/')
|
4 |
-
|
5 |
-
import gradio as gr
|
6 |
-
from fudge.predict_clickbait import generate_clickbait, tokenizer, classifier_tokenizer
|
7 |
-
from datasets import load_dataset,DatasetDict,Dataset
|
8 |
-
# from datasets import
|
9 |
-
from transformers import AutoTokenizer,AutoModelForSeq2SeqLM
|
10 |
-
import numpy as np
|
11 |
-
from sklearn.model_selection import train_test_split
|
12 |
-
import pandas as pd
|
13 |
-
from sklearn.utils.class_weight import compute_class_weight
|
14 |
-
import torch
|
15 |
-
import pandas as pd
|
16 |
-
from fudge.model import Model
|
17 |
-
import os
|
18 |
-
from argparse import ArgumentParser
|
19 |
-
from collections import namedtuple
|
20 |
-
import mock
|
21 |
-
|
22 |
-
from tqdm import tqdm
|
23 |
-
import numpy as np
|
24 |
-
import torch.nn as nn
|
25 |
-
import torch.nn.functional as F
|
26 |
-
from data import Dataset
|
27 |
-
from fudge.util import save_checkpoint, ProgressMeter, AverageMeter, num_params
|
28 |
-
from fudge.constants import *
|
29 |
-
|
30 |
-
|
31 |
-
# imp.reload(model)
|
32 |
-
pretrained_model = "../checkpoint-150/"
|
33 |
-
generation_model = AutoModelForSeq2SeqLM.from_pretrained(pretrained_model, return_dict=True).to(device)
|
34 |
-
|
35 |
-
device = 'cuda'
|
36 |
-
pad_id = 0
|
37 |
-
|
38 |
-
generation_model.eval()
|
39 |
-
|
40 |
-
model_args = mock.Mock()
|
41 |
-
model_args.task = 'clickbait'
|
42 |
-
model_args.device = device
|
43 |
-
model_args.checkpoint = '../checkpoint-1464/'
|
44 |
-
|
45 |
-
# conditioning_model = Model(model_args, pad_id, len(dataset_info.index2word)) # no need to get the glove embeddings when reloading since they're saved in model ckpt anyway
|
46 |
-
conditioning_model = Model(model_args, pad_id, vocab_size=None) # no need to get the glove embeddings when reloading since they're saved in model ckpt anyway
|
47 |
-
conditioning_model = conditioning_model.to(device)
|
48 |
-
conditioning_model.eval()
|
49 |
-
|
50 |
-
condition_lambda = 5.0
|
51 |
-
length_cutoff = 50
|
52 |
-
precondition_topk = 200
|
53 |
-
|
54 |
-
|
55 |
-
conditioning_model.classifier
|
56 |
-
|
57 |
-
model_args.checkpoint
|
58 |
-
|
59 |
-
classifier_tokenizer = AutoTokenizer.from_pretrained(model_args.checkpoint, load_best_model_at_end=True)
|
60 |
-
|
61 |
-
|
62 |
-
def rate_title(input_text, model, tokenizer, device='cuda'):
|
63 |
-
# input_text = {
|
64 |
-
# "postText": input_text['postText'],
|
65 |
-
# "truthClass" : input_text['truthClass']
|
66 |
-
# }
|
67 |
-
tokenized_input = preprocess_function_title_only_classification(input_text,tokenizer=tokenizer)
|
68 |
-
# print(tokenized_input.items())
|
69 |
-
dict_tokenized_input = {k : torch.tensor([v]).to(device) for k,v in tokenized_input.items() if k != 'labels'}
|
70 |
-
predicted_class = float(model(**dict_tokenized_input).logits)
|
71 |
-
actual_class = input_text['truthClass']
|
72 |
-
|
73 |
-
# print(predicted_class, actual_class)
|
74 |
-
return {'predicted_class' : predicted_class}
|
75 |
-
|
76 |
-
def preprocess_function_title_only_classification(examples,tokenizer=None):
|
77 |
-
model_inputs = tokenizer(examples['postText'], padding="longest", truncation=True, max_length=25)
|
78 |
-
|
79 |
-
model_inputs['labels'] = examples['truthClass']
|
80 |
-
|
81 |
-
return model_inputs
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
def clickbait_generator(article_content, condition_lambda=5.0):
|
86 |
-
# result = "Hi {}! π. The Mulitple of {} is {}".format(name, number, round(number**2, 2))
|
87 |
-
results = generate_clickbait(model=generation_model,
|
88 |
-
tokenizer=tokenizer,
|
89 |
-
conditioning_model=conditioning_model,
|
90 |
-
input_text=[None],
|
91 |
-
dataset_info=dataset_info,
|
92 |
-
precondition_topk=precondition_topk,
|
93 |
-
length_cutoff=length_cutoff,
|
94 |
-
condition_lambda=condition_lambda,
|
95 |
-
article_content=article_content,
|
96 |
-
device=device)
|
97 |
-
|
98 |
-
return results[0].replace('</s>', '').replace('<pad>', '')
|
99 |
-
|
100 |
-
title = "Clickbait generator"
|
101 |
-
description = """
|
102 |
-
"Use the [Fudge](https://github.com/yangkevin2/naacl-2021-fudge-controlled-generation) implementation fine tuned for our purposes to try and create news headline you are looking for!"
|
103 |
-
"""
|
104 |
-
|
105 |
-
article = "Check out [the codebase for our model](https://github.com/dsvilarkovic/naacl-2021-fudge-controlled-generation) that this demo is based off of."
|
106 |
-
|
107 |
-
|
108 |
-
app = gr.Interface(
|
109 |
-
title = title,
|
110 |
-
description = description,
|
111 |
-
label = 'Article content or paragraph',
|
112 |
-
fn = clickbait_generator,
|
113 |
-
inputs=["text", gr.Slider(0, 100, step=0.1, value=5.0)], outputs="text")
|
114 |
app.launch()
|
|
|
1 |
+
# import os
|
2 |
+
|
3 |
+
# os.chdir('naacl-2021-fudge-controlled-generation/')
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
from fudge.predict_clickbait import generate_clickbait, tokenizer, classifier_tokenizer
|
7 |
+
from datasets import load_dataset,DatasetDict,Dataset
|
8 |
+
# from datasets import
|
9 |
+
from transformers import AutoTokenizer,AutoModelForSeq2SeqLM
|
10 |
+
import numpy as np
|
11 |
+
from sklearn.model_selection import train_test_split
|
12 |
+
import pandas as pd
|
13 |
+
from sklearn.utils.class_weight import compute_class_weight
|
14 |
+
import torch
|
15 |
+
import pandas as pd
|
16 |
+
from fudge.model import Model
|
17 |
+
import os
|
18 |
+
from argparse import ArgumentParser
|
19 |
+
from collections import namedtuple
|
20 |
+
import mock
|
21 |
+
|
22 |
+
from tqdm import tqdm
|
23 |
+
import numpy as np
|
24 |
+
import torch.nn as nn
|
25 |
+
import torch.nn.functional as F
|
26 |
+
from fudge.data import Dataset
|
27 |
+
from fudge.util import save_checkpoint, ProgressMeter, AverageMeter, num_params
|
28 |
+
from fudge.constants import *
|
29 |
+
|
30 |
+
|
31 |
+
# imp.reload(model)
|
32 |
+
pretrained_model = "../checkpoint-150/"
|
33 |
+
generation_model = AutoModelForSeq2SeqLM.from_pretrained(pretrained_model, return_dict=True).to(device)
|
34 |
+
|
35 |
+
device = 'cuda'
|
36 |
+
pad_id = 0
|
37 |
+
|
38 |
+
generation_model.eval()
|
39 |
+
|
40 |
+
model_args = mock.Mock()
|
41 |
+
model_args.task = 'clickbait'
|
42 |
+
model_args.device = device
|
43 |
+
model_args.checkpoint = '../checkpoint-1464/'
|
44 |
+
|
45 |
+
# conditioning_model = Model(model_args, pad_id, len(dataset_info.index2word)) # no need to get the glove embeddings when reloading since they're saved in model ckpt anyway
|
46 |
+
conditioning_model = Model(model_args, pad_id, vocab_size=None) # no need to get the glove embeddings when reloading since they're saved in model ckpt anyway
|
47 |
+
conditioning_model = conditioning_model.to(device)
|
48 |
+
conditioning_model.eval()
|
49 |
+
|
50 |
+
condition_lambda = 5.0
|
51 |
+
length_cutoff = 50
|
52 |
+
precondition_topk = 200
|
53 |
+
|
54 |
+
|
55 |
+
conditioning_model.classifier
|
56 |
+
|
57 |
+
model_args.checkpoint
|
58 |
+
|
59 |
+
classifier_tokenizer = AutoTokenizer.from_pretrained(model_args.checkpoint, load_best_model_at_end=True)
|
60 |
+
|
61 |
+
|
62 |
+
def rate_title(input_text, model, tokenizer, device='cuda'):
|
63 |
+
# input_text = {
|
64 |
+
# "postText": input_text['postText'],
|
65 |
+
# "truthClass" : input_text['truthClass']
|
66 |
+
# }
|
67 |
+
tokenized_input = preprocess_function_title_only_classification(input_text,tokenizer=tokenizer)
|
68 |
+
# print(tokenized_input.items())
|
69 |
+
dict_tokenized_input = {k : torch.tensor([v]).to(device) for k,v in tokenized_input.items() if k != 'labels'}
|
70 |
+
predicted_class = float(model(**dict_tokenized_input).logits)
|
71 |
+
actual_class = input_text['truthClass']
|
72 |
+
|
73 |
+
# print(predicted_class, actual_class)
|
74 |
+
return {'predicted_class' : predicted_class}
|
75 |
+
|
76 |
+
def preprocess_function_title_only_classification(examples,tokenizer=None):
|
77 |
+
model_inputs = tokenizer(examples['postText'], padding="longest", truncation=True, max_length=25)
|
78 |
+
|
79 |
+
model_inputs['labels'] = examples['truthClass']
|
80 |
+
|
81 |
+
return model_inputs
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
def clickbait_generator(article_content, condition_lambda=5.0):
|
86 |
+
# result = "Hi {}! π. The Mulitple of {} is {}".format(name, number, round(number**2, 2))
|
87 |
+
results = generate_clickbait(model=generation_model,
|
88 |
+
tokenizer=tokenizer,
|
89 |
+
conditioning_model=conditioning_model,
|
90 |
+
input_text=[None],
|
91 |
+
dataset_info=dataset_info,
|
92 |
+
precondition_topk=precondition_topk,
|
93 |
+
length_cutoff=length_cutoff,
|
94 |
+
condition_lambda=condition_lambda,
|
95 |
+
article_content=article_content,
|
96 |
+
device=device)
|
97 |
+
|
98 |
+
return results[0].replace('</s>', '').replace('<pad>', '')
|
99 |
+
|
100 |
+
title = "Clickbait generator"
|
101 |
+
description = """
|
102 |
+
"Use the [Fudge](https://github.com/yangkevin2/naacl-2021-fudge-controlled-generation) implementation fine tuned for our purposes to try and create news headline you are looking for!"
|
103 |
+
"""
|
104 |
+
|
105 |
+
article = "Check out [the codebase for our model](https://github.com/dsvilarkovic/naacl-2021-fudge-controlled-generation) that this demo is based off of."
|
106 |
+
|
107 |
+
|
108 |
+
app = gr.Interface(
|
109 |
+
title = title,
|
110 |
+
description = description,
|
111 |
+
label = 'Article content or paragraph',
|
112 |
+
fn = clickbait_generator,
|
113 |
+
inputs=["text", gr.Slider(0, 100, step=0.1, value=5.0)], outputs="text")
|
114 |
app.launch()
|