|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Precision/Recall (PR) from the paper "Improved Precision and Recall |
|
Metric for Assessing Generative Models". Matches the original implementation |
|
by Kynkaanniemi et al. at |
|
https://github.com/kynkaat/improved-precision-and-recall-metric/blob/master/precision_recall.py""" |
|
|
|
import torch |
|
from . import metric_utils |
|
|
|
|
|
|
|
def compute_distances(row_features, col_features, num_gpus, rank, col_batch_size): |
|
assert 0 <= rank < num_gpus |
|
num_cols = col_features.shape[0] |
|
num_batches = ((num_cols - 1) // col_batch_size // num_gpus + 1) * num_gpus |
|
col_batches = torch.nn.functional.pad(col_features, [0, 0, 0, -num_cols % num_batches]).chunk(num_batches) |
|
dist_batches = [] |
|
for col_batch in col_batches[rank :: num_gpus]: |
|
dist_batch = torch.cdist(row_features.unsqueeze(0), col_batch.unsqueeze(0))[0] |
|
for src in range(num_gpus): |
|
dist_broadcast = dist_batch.clone() |
|
if num_gpus > 1: |
|
torch.distributed.broadcast(dist_broadcast, src=src) |
|
dist_batches.append(dist_broadcast.cpu() if rank == 0 else None) |
|
return torch.cat(dist_batches, dim=1)[:, :num_cols] if rank == 0 else None |
|
|
|
|
|
|
|
def compute_pr(opts, max_real, num_gen, nhood_size, row_batch_size, col_batch_size): |
|
detector_url = 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/vgg16.pt' |
|
detector_kwargs = dict(return_features=True) |
|
|
|
real_features = metric_utils.compute_feature_stats_for_dataset( |
|
opts=opts, detector_url=detector_url, detector_kwargs=detector_kwargs, |
|
rel_lo=0, rel_hi=0, capture_all=True, max_items=max_real).get_all_torch().to(torch.float16).to(opts.device) |
|
|
|
gen_features = metric_utils.compute_feature_stats_for_generator( |
|
opts=opts, detector_url=detector_url, detector_kwargs=detector_kwargs, |
|
rel_lo=0, rel_hi=1, capture_all=True, max_items=num_gen).get_all_torch().to(torch.float16).to(opts.device) |
|
|
|
results = dict() |
|
for name, manifold, probes in [('precision', real_features, gen_features), ('recall', gen_features, real_features)]: |
|
kth = [] |
|
for manifold_batch in manifold.split(row_batch_size): |
|
dist = compute_distances(row_features=manifold_batch, col_features=manifold, num_gpus=opts.num_gpus, rank=opts.rank, col_batch_size=col_batch_size) |
|
kth.append(dist.to(torch.float32).kthvalue(nhood_size + 1).values.to(torch.float16) if opts.rank == 0 else None) |
|
kth = torch.cat(kth) if opts.rank == 0 else None |
|
pred = [] |
|
for probes_batch in probes.split(row_batch_size): |
|
dist = compute_distances(row_features=probes_batch, col_features=manifold, num_gpus=opts.num_gpus, rank=opts.rank, col_batch_size=col_batch_size) |
|
pred.append((dist <= kth).any(dim=1) if opts.rank == 0 else None) |
|
results[name] = float(torch.cat(pred).to(torch.float32).mean() if opts.rank == 0 else 'nan') |
|
return results['precision'], results['recall'] |
|
|
|
|
|
|