|
|
|
|
|
from pathlib import Path |
|
|
|
from ultralytics import SAM, YOLO |
|
|
|
|
|
def auto_annotate(data, det_model="yolov8x.pt", sam_model="sam_b.pt", device="", output_dir=None): |
|
""" |
|
Automatically annotates images using a YOLO object detection model and a SAM segmentation model. |
|
|
|
Args: |
|
data (str): Path to a folder containing images to be annotated. |
|
det_model (str, optional): Pre-trained YOLO detection model. Defaults to 'yolov8x.pt'. |
|
sam_model (str, optional): Pre-trained SAM segmentation model. Defaults to 'sam_b.pt'. |
|
device (str, optional): Device to run the models on. Defaults to an empty string (CPU or GPU, if available). |
|
output_dir (str | None | optional): Directory to save the annotated results. |
|
Defaults to a 'labels' folder in the same directory as 'data'. |
|
|
|
Example: |
|
```python |
|
from ultralytics.data.annotator import auto_annotate |
|
|
|
auto_annotate(data='ultralytics/assets', det_model='yolov8n.pt', sam_model='mobile_sam.pt') |
|
``` |
|
""" |
|
det_model = YOLO(det_model) |
|
sam_model = SAM(sam_model) |
|
|
|
data = Path(data) |
|
if not output_dir: |
|
output_dir = data.parent / f"{data.stem}_auto_annotate_labels" |
|
Path(output_dir).mkdir(exist_ok=True, parents=True) |
|
|
|
det_results = det_model(data, stream=True, device=device) |
|
|
|
for result in det_results: |
|
class_ids = result.boxes.cls.int().tolist() |
|
if len(class_ids): |
|
boxes = result.boxes.xyxy |
|
sam_results = sam_model(result.orig_img, bboxes=boxes, verbose=False, save=False, device=device) |
|
segments = sam_results[0].masks.xyn |
|
|
|
with open(f"{Path(output_dir) / Path(result.path).stem}.txt", "w") as f: |
|
for i in range(len(segments)): |
|
s = segments[i] |
|
if len(s) == 0: |
|
continue |
|
segment = map(str, segments[i].reshape(-1).tolist()) |
|
f.write(f"{class_ids[i]} " + " ".join(segment) + "\n") |
|
|