|
|
|
|
|
import torch |
|
|
|
from ultralytics.models.yolo.detect import DetectionValidator |
|
from ultralytics.utils import ops |
|
|
|
__all__ = ["NASValidator"] |
|
|
|
|
|
class NASValidator(DetectionValidator): |
|
""" |
|
Ultralytics YOLO NAS Validator for object detection. |
|
|
|
Extends `DetectionValidator` from the Ultralytics models package and is designed to post-process the raw predictions |
|
generated by YOLO NAS models. It performs non-maximum suppression to remove overlapping and low-confidence boxes, |
|
ultimately producing the final detections. |
|
|
|
Attributes: |
|
args (Namespace): Namespace containing various configurations for post-processing, such as confidence and IoU thresholds. |
|
lb (torch.Tensor): Optional tensor for multilabel NMS. |
|
|
|
Example: |
|
```python |
|
from ultralytics import NAS |
|
|
|
model = NAS('yolo_nas_s') |
|
validator = model.validator |
|
# Assumes that raw_preds are available |
|
final_preds = validator.postprocess(raw_preds) |
|
``` |
|
|
|
Note: |
|
This class is generally not instantiated directly but is used internally within the `NAS` class. |
|
""" |
|
|
|
def postprocess(self, preds_in): |
|
"""Apply Non-maximum suppression to prediction outputs.""" |
|
boxes = ops.xyxy2xywh(preds_in[0][0]) |
|
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) |
|
return ops.non_max_suppression( |
|
preds, |
|
self.args.conf, |
|
self.args.iou, |
|
labels=self.lb, |
|
multi_label=False, |
|
agnostic=self.args.single_cls, |
|
max_det=self.args.max_det, |
|
max_time_img=0.5, |
|
) |
|
|