|
|
|
|
|
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING |
|
|
|
try: |
|
assert not TESTS_RUNNING |
|
assert SETTINGS["clearml"] is True |
|
import clearml |
|
from clearml import Task |
|
from clearml.binding.frameworks.pytorch_bind import PatchPyTorchModelIO |
|
from clearml.binding.matplotlib_bind import PatchedMatplotlib |
|
|
|
assert hasattr(clearml, "__version__") |
|
|
|
except (ImportError, AssertionError): |
|
clearml = None |
|
|
|
|
|
def _log_debug_samples(files, title="Debug Samples") -> None: |
|
""" |
|
Log files (images) as debug samples in the ClearML task. |
|
|
|
Args: |
|
files (list): A list of file paths in PosixPath format. |
|
title (str): A title that groups together images with the same values. |
|
""" |
|
import re |
|
|
|
if task := Task.current_task(): |
|
for f in files: |
|
if f.exists(): |
|
it = re.search(r"_batch(\d+)", f.name) |
|
iteration = int(it.groups()[0]) if it else 0 |
|
task.get_logger().report_image( |
|
title=title, series=f.name.replace(it.group(), ""), local_path=str(f), iteration=iteration |
|
) |
|
|
|
|
|
def _log_plot(title, plot_path) -> None: |
|
""" |
|
Log an image as a plot in the plot section of ClearML. |
|
|
|
Args: |
|
title (str): The title of the plot. |
|
plot_path (str): The path to the saved image file. |
|
""" |
|
import matplotlib.image as mpimg |
|
import matplotlib.pyplot as plt |
|
|
|
img = mpimg.imread(plot_path) |
|
fig = plt.figure() |
|
ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect="auto", xticks=[], yticks=[]) |
|
ax.imshow(img) |
|
|
|
Task.current_task().get_logger().report_matplotlib_figure( |
|
title=title, series="", figure=fig, report_interactive=False |
|
) |
|
|
|
|
|
def on_pretrain_routine_start(trainer): |
|
"""Runs at start of pretraining routine; initializes and connects/ logs task to ClearML.""" |
|
try: |
|
if task := Task.current_task(): |
|
|
|
|
|
PatchPyTorchModelIO.update_current_task(None) |
|
PatchedMatplotlib.update_current_task(None) |
|
else: |
|
task = Task.init( |
|
project_name=trainer.args.project or "YOLOv8", |
|
task_name=trainer.args.name, |
|
tags=["YOLOv8"], |
|
output_uri=True, |
|
reuse_last_task_id=False, |
|
auto_connect_frameworks={"pytorch": False, "matplotlib": False}, |
|
) |
|
LOGGER.warning( |
|
"ClearML Initialized a new task. If you want to run remotely, " |
|
"please add clearml-init and connect your arguments before initializing YOLO." |
|
) |
|
task.connect(vars(trainer.args), name="General") |
|
except Exception as e: |
|
LOGGER.warning(f"WARNING β οΈ ClearML installed but not initialized correctly, not logging this run. {e}") |
|
|
|
|
|
def on_train_epoch_end(trainer): |
|
"""Logs debug samples for the first epoch of YOLO training and report current training progress.""" |
|
if task := Task.current_task(): |
|
|
|
if trainer.epoch == 1: |
|
_log_debug_samples(sorted(trainer.save_dir.glob("train_batch*.jpg")), "Mosaic") |
|
|
|
for k, v in trainer.label_loss_items(trainer.tloss, prefix="train").items(): |
|
task.get_logger().report_scalar("train", k, v, iteration=trainer.epoch) |
|
for k, v in trainer.lr.items(): |
|
task.get_logger().report_scalar("lr", k, v, iteration=trainer.epoch) |
|
|
|
|
|
def on_fit_epoch_end(trainer): |
|
"""Reports model information to logger at the end of an epoch.""" |
|
if task := Task.current_task(): |
|
|
|
task.get_logger().report_scalar( |
|
title="Epoch Time", series="Epoch Time", value=trainer.epoch_time, iteration=trainer.epoch |
|
) |
|
for k, v in trainer.metrics.items(): |
|
task.get_logger().report_scalar("val", k, v, iteration=trainer.epoch) |
|
if trainer.epoch == 0: |
|
from ultralytics.utils.torch_utils import model_info_for_loggers |
|
|
|
for k, v in model_info_for_loggers(trainer).items(): |
|
task.get_logger().report_single_value(k, v) |
|
|
|
|
|
def on_val_end(validator): |
|
"""Logs validation results including labels and predictions.""" |
|
if Task.current_task(): |
|
|
|
_log_debug_samples(sorted(validator.save_dir.glob("val*.jpg")), "Validation") |
|
|
|
|
|
def on_train_end(trainer): |
|
"""Logs final model and its name on training completion.""" |
|
if task := Task.current_task(): |
|
|
|
files = [ |
|
"results.png", |
|
"confusion_matrix.png", |
|
"confusion_matrix_normalized.png", |
|
*(f"{x}_curve.png" for x in ("F1", "PR", "P", "R")), |
|
] |
|
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] |
|
for f in files: |
|
_log_plot(title=f.stem, plot_path=f) |
|
|
|
for k, v in trainer.validator.metrics.results_dict.items(): |
|
task.get_logger().report_single_value(k, v) |
|
|
|
task.update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False) |
|
|
|
|
|
callbacks = ( |
|
{ |
|
"on_pretrain_routine_start": on_pretrain_routine_start, |
|
"on_train_epoch_end": on_train_epoch_end, |
|
"on_fit_epoch_end": on_fit_epoch_end, |
|
"on_val_end": on_val_end, |
|
"on_train_end": on_train_end, |
|
} |
|
if clearml |
|
else {} |
|
) |
|
|