Ean Yang
εˆε§‹εŒ–ιƒ¨η½²
69a5bd9
raw
history blame
3.94 kB
# Ultralytics YOLO πŸš€, AGPL-3.0 license
from typing import List
from urllib.parse import urlsplit
import numpy as np
class TritonRemoteModel:
"""
Client for interacting with a remote Triton Inference Server model.
Attributes:
endpoint (str): The name of the model on the Triton server.
url (str): The URL of the Triton server.
triton_client: The Triton client (either HTTP or gRPC).
InferInput: The input class for the Triton client.
InferRequestedOutput: The output request class for the Triton client.
input_formats (List[str]): The data types of the model inputs.
np_input_formats (List[type]): The numpy data types of the model inputs.
input_names (List[str]): The names of the model inputs.
output_names (List[str]): The names of the model outputs.
"""
def __init__(self, url: str, endpoint: str = "", scheme: str = ""):
"""
Initialize the TritonRemoteModel.
Arguments may be provided individually or parsed from a collective 'url' argument of the form
<scheme>://<netloc>/<endpoint>/<task_name>
Args:
url (str): The URL of the Triton server.
endpoint (str): The name of the model on the Triton server.
scheme (str): The communication scheme ('http' or 'grpc').
"""
if not endpoint and not scheme: # Parse all args from URL string
splits = urlsplit(url)
endpoint = splits.path.strip("/").split("/")[0]
scheme = splits.scheme
url = splits.netloc
self.endpoint = endpoint
self.url = url
# Choose the Triton client based on the communication scheme
if scheme == "http":
import tritonclient.http as client # noqa
self.triton_client = client.InferenceServerClient(url=self.url, verbose=False, ssl=False)
config = self.triton_client.get_model_config(endpoint)
else:
import tritonclient.grpc as client # noqa
self.triton_client = client.InferenceServerClient(url=self.url, verbose=False, ssl=False)
config = self.triton_client.get_model_config(endpoint, as_json=True)["config"]
# Sort output names alphabetically, i.e. 'output0', 'output1', etc.
config["output"] = sorted(config["output"], key=lambda x: x.get("name"))
# Define model attributes
type_map = {"TYPE_FP32": np.float32, "TYPE_FP16": np.float16, "TYPE_UINT8": np.uint8}
self.InferRequestedOutput = client.InferRequestedOutput
self.InferInput = client.InferInput
self.input_formats = [x["data_type"] for x in config["input"]]
self.np_input_formats = [type_map[x] for x in self.input_formats]
self.input_names = [x["name"] for x in config["input"]]
self.output_names = [x["name"] for x in config["output"]]
def __call__(self, *inputs: np.ndarray) -> List[np.ndarray]:
"""
Call the model with the given inputs.
Args:
*inputs (List[np.ndarray]): Input data to the model.
Returns:
(List[np.ndarray]): Model outputs.
"""
infer_inputs = []
input_format = inputs[0].dtype
for i, x in enumerate(inputs):
if x.dtype != self.np_input_formats[i]:
x = x.astype(self.np_input_formats[i])
infer_input = self.InferInput(self.input_names[i], [*x.shape], self.input_formats[i].replace("TYPE_", ""))
infer_input.set_data_from_numpy(x)
infer_inputs.append(infer_input)
infer_outputs = [self.InferRequestedOutput(output_name) for output_name in self.output_names]
outputs = self.triton_client.infer(model_name=self.endpoint, inputs=infer_inputs, outputs=infer_outputs)
return [outputs.as_numpy(output_name).astype(input_format) for output_name in self.output_names]