|
import gradio as gr |
|
import cv2 |
|
import tempfile |
|
from ultralytics import YOLOv10 |
|
|
|
|
|
def yolov10_inference(image, video, model_id, image_size, conf_threshold): |
|
model = YOLOv10.from_pretrained(f'jameslahm/{model_id}') |
|
if image: |
|
results = model.predict(source=image, imgsz=image_size, conf=conf_threshold) |
|
annotated_image = results[0].plot() |
|
return annotated_image[:, :, ::-1], None |
|
else: |
|
video_path = tempfile.mktemp(suffix=".webm") |
|
with open(video_path, "wb") as f: |
|
with open(video, "rb") as g: |
|
f.write(g.read()) |
|
|
|
cap = cv2.VideoCapture(video_path) |
|
fps = cap.get(cv2.CAP_PROP_FPS) |
|
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
|
|
output_video_path = tempfile.mktemp(suffix=".webm") |
|
out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'vp80'), fps, (frame_width, frame_height)) |
|
|
|
while cap.isOpened(): |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
|
|
results = model.predict(source=frame, imgsz=image_size, conf=conf_threshold) |
|
annotated_frame = results[0].plot() |
|
out.write(annotated_frame) |
|
|
|
cap.release() |
|
out.release() |
|
|
|
return None, output_video_path |
|
|
|
|
|
def yolov10_inference_for_examples(image, model_path, image_size, conf_threshold): |
|
annotated_image, _ = yolov10_inference(image, None, model_path, image_size, conf_threshold) |
|
return annotated_image |
|
|
|
|
|
def app(): |
|
with gr.Blocks(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(type="pil", label="Image", visible=True) |
|
video = gr.Video(label="Video", visible=False) |
|
input_type = gr.Radio( |
|
choices=["Image", "Video"], |
|
value="Image", |
|
label="输入类型", |
|
) |
|
model_id = gr.Dropdown( |
|
label="模型", |
|
choices=[ |
|
"yolov10n", |
|
"yolov10s", |
|
"yolov10m", |
|
"yolov10b", |
|
"yolov10l", |
|
"yolov10x", |
|
], |
|
value="yolov10m", |
|
) |
|
image_size = gr.Slider( |
|
label="图片大小", |
|
minimum=320, |
|
maximum=1280, |
|
step=32, |
|
value=640, |
|
) |
|
conf_threshold = gr.Slider( |
|
label="置信度阈值Confidence Threshold", |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.25, |
|
) |
|
yolov10_infer = gr.Button(value="Detect Objects") |
|
|
|
with gr.Column(): |
|
output_image = gr.Image(type="numpy", label="注释的图像", visible=True) |
|
output_video = gr.Video(label="注释的视频", visible=False) |
|
|
|
def update_visibility(input_type): |
|
image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False) |
|
video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True) |
|
output_image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False) |
|
output_video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True) |
|
|
|
return image, video, output_image, output_video |
|
|
|
input_type.change( |
|
fn=update_visibility, |
|
inputs=[input_type], |
|
outputs=[image, video, output_image, output_video], |
|
) |
|
|
|
def run_inference(image, video, model_id, image_size, conf_threshold, input_type): |
|
if input_type == "Image": |
|
return yolov10_inference(image, None, model_id, image_size, conf_threshold) |
|
else: |
|
return yolov10_inference(None, video, model_id, image_size, conf_threshold) |
|
|
|
|
|
yolov10_infer.click( |
|
fn=run_inference, |
|
inputs=[image, video, model_id, image_size, conf_threshold, input_type], |
|
outputs=[output_image, output_video], |
|
) |
|
|
|
gr.Examples( |
|
examples=[ |
|
[ |
|
"./bus.jpg", |
|
"yolov10s", |
|
640, |
|
0.25, |
|
], |
|
[ |
|
"./zidane.jpg", |
|
"yolov10s", |
|
640, |
|
0.25, |
|
], |
|
], |
|
fn=yolov10_inference_for_examples, |
|
inputs=[ |
|
image, |
|
model_id, |
|
image_size, |
|
conf_threshold, |
|
], |
|
outputs=[output_image], |
|
cache_examples='lazy', |
|
) |
|
|
|
gradio_app = gr.Blocks() |
|
with gradio_app: |
|
gr.HTML( |
|
""" |
|
<h1 style='text-align: center'> |
|
YOLOv10: 实时端到端目标检测 |
|
</h1> |
|
""") |
|
gr.HTML( |
|
""" |
|
<h3 style='text-align: center'> |
|
<a href='https://github.com/YQisme/yolov10' target='_blank'>github</a> |
|
</h3> |
|
""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
app() |
|
if __name__ == '__main__': |
|
gradio_app.launch() |
|
|