|
|
|
|
|
import math |
|
import random |
|
from copy import deepcopy |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as T |
|
|
|
from ultralytics.utils import LOGGER, colorstr |
|
from ultralytics.utils.checks import check_version |
|
from ultralytics.utils.instance import Instances |
|
from ultralytics.utils.metrics import bbox_ioa |
|
from ultralytics.utils.ops import segment2box, xyxyxyxy2xywhr |
|
from ultralytics.utils.torch_utils import TORCHVISION_0_10, TORCHVISION_0_11, TORCHVISION_0_13 |
|
from .utils import polygons2masks, polygons2masks_overlap |
|
|
|
DEFAULT_MEAN = (0.0, 0.0, 0.0) |
|
DEFAULT_STD = (1.0, 1.0, 1.0) |
|
DEFAULT_CROP_FTACTION = 1.0 |
|
|
|
|
|
|
|
class BaseTransform: |
|
""" |
|
Base class for image transformations. |
|
|
|
This is a generic transformation class that can be extended for specific image processing needs. |
|
The class is designed to be compatible with both classification and semantic segmentation tasks. |
|
|
|
Methods: |
|
__init__: Initializes the BaseTransform object. |
|
apply_image: Applies image transformation to labels. |
|
apply_instances: Applies transformations to object instances in labels. |
|
apply_semantic: Applies semantic segmentation to an image. |
|
__call__: Applies all label transformations to an image, instances, and semantic masks. |
|
""" |
|
|
|
def __init__(self) -> None: |
|
"""Initializes the BaseTransform object.""" |
|
pass |
|
|
|
def apply_image(self, labels): |
|
"""Applies image transformations to labels.""" |
|
pass |
|
|
|
def apply_instances(self, labels): |
|
"""Applies transformations to object instances in labels.""" |
|
pass |
|
|
|
def apply_semantic(self, labels): |
|
"""Applies semantic segmentation to an image.""" |
|
pass |
|
|
|
def __call__(self, labels): |
|
"""Applies all label transformations to an image, instances, and semantic masks.""" |
|
self.apply_image(labels) |
|
self.apply_instances(labels) |
|
self.apply_semantic(labels) |
|
|
|
|
|
class Compose: |
|
"""Class for composing multiple image transformations.""" |
|
|
|
def __init__(self, transforms): |
|
"""Initializes the Compose object with a list of transforms.""" |
|
self.transforms = transforms |
|
|
|
def __call__(self, data): |
|
"""Applies a series of transformations to input data.""" |
|
for t in self.transforms: |
|
data = t(data) |
|
return data |
|
|
|
def append(self, transform): |
|
"""Appends a new transform to the existing list of transforms.""" |
|
self.transforms.append(transform) |
|
|
|
def tolist(self): |
|
"""Converts the list of transforms to a standard Python list.""" |
|
return self.transforms |
|
|
|
def __repr__(self): |
|
"""Returns a string representation of the object.""" |
|
return f"{self.__class__.__name__}({', '.join([f'{t}' for t in self.transforms])})" |
|
|
|
|
|
class BaseMixTransform: |
|
""" |
|
Class for base mix (MixUp/Mosaic) transformations. |
|
|
|
This implementation is from mmyolo. |
|
""" |
|
|
|
def __init__(self, dataset, pre_transform=None, p=0.0) -> None: |
|
"""Initializes the BaseMixTransform object with dataset, pre_transform, and probability.""" |
|
self.dataset = dataset |
|
self.pre_transform = pre_transform |
|
self.p = p |
|
|
|
def __call__(self, labels): |
|
"""Applies pre-processing transforms and mixup/mosaic transforms to labels data.""" |
|
if random.uniform(0, 1) > self.p: |
|
return labels |
|
|
|
|
|
indexes = self.get_indexes() |
|
if isinstance(indexes, int): |
|
indexes = [indexes] |
|
|
|
|
|
mix_labels = [self.dataset.get_image_and_label(i) for i in indexes] |
|
|
|
if self.pre_transform is not None: |
|
for i, data in enumerate(mix_labels): |
|
mix_labels[i] = self.pre_transform(data) |
|
labels["mix_labels"] = mix_labels |
|
|
|
|
|
labels = self._mix_transform(labels) |
|
labels.pop("mix_labels", None) |
|
return labels |
|
|
|
def _mix_transform(self, labels): |
|
"""Applies MixUp or Mosaic augmentation to the label dictionary.""" |
|
raise NotImplementedError |
|
|
|
def get_indexes(self): |
|
"""Gets a list of shuffled indexes for mosaic augmentation.""" |
|
raise NotImplementedError |
|
|
|
|
|
class Mosaic(BaseMixTransform): |
|
""" |
|
Mosaic augmentation. |
|
|
|
This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image. |
|
The augmentation is applied to a dataset with a given probability. |
|
|
|
Attributes: |
|
dataset: The dataset on which the mosaic augmentation is applied. |
|
imgsz (int, optional): Image size (height and width) after mosaic pipeline of a single image. Default to 640. |
|
p (float, optional): Probability of applying the mosaic augmentation. Must be in the range 0-1. Default to 1.0. |
|
n (int, optional): The grid size, either 4 (for 2x2) or 9 (for 3x3). |
|
""" |
|
|
|
def __init__(self, dataset, imgsz=640, p=1.0, n=4): |
|
"""Initializes the object with a dataset, image size, probability, and border.""" |
|
assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}." |
|
assert n in (4, 9), "grid must be equal to 4 or 9." |
|
super().__init__(dataset=dataset, p=p) |
|
self.dataset = dataset |
|
self.imgsz = imgsz |
|
self.border = (-imgsz // 2, -imgsz // 2) |
|
self.n = n |
|
|
|
def get_indexes(self, buffer=True): |
|
"""Return a list of random indexes from the dataset.""" |
|
if buffer: |
|
return random.choices(list(self.dataset.buffer), k=self.n - 1) |
|
else: |
|
return [random.randint(0, len(self.dataset) - 1) for _ in range(self.n - 1)] |
|
|
|
def _mix_transform(self, labels): |
|
"""Apply mixup transformation to the input image and labels.""" |
|
assert labels.get("rect_shape", None) is None, "rect and mosaic are mutually exclusive." |
|
assert len(labels.get("mix_labels", [])), "There are no other images for mosaic augment." |
|
return ( |
|
self._mosaic3(labels) if self.n == 3 else self._mosaic4(labels) if self.n == 4 else self._mosaic9(labels) |
|
) |
|
|
|
def _mosaic3(self, labels): |
|
"""Create a 1x3 image mosaic.""" |
|
mosaic_labels = [] |
|
s = self.imgsz |
|
for i in range(3): |
|
labels_patch = labels if i == 0 else labels["mix_labels"][i - 1] |
|
|
|
img = labels_patch["img"] |
|
h, w = labels_patch.pop("resized_shape") |
|
|
|
|
|
if i == 0: |
|
img3 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) |
|
h0, w0 = h, w |
|
c = s, s, s + w, s + h |
|
elif i == 1: |
|
c = s + w0, s, s + w0 + w, s + h |
|
elif i == 2: |
|
c = s - w, s + h0 - h, s, s + h0 |
|
|
|
padw, padh = c[:2] |
|
x1, y1, x2, y2 = (max(x, 0) for x in c) |
|
|
|
img3[y1:y2, x1:x2] = img[y1 - padh :, x1 - padw :] |
|
|
|
|
|
|
|
labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1]) |
|
mosaic_labels.append(labels_patch) |
|
final_labels = self._cat_labels(mosaic_labels) |
|
|
|
final_labels["img"] = img3[-self.border[0] : self.border[0], -self.border[1] : self.border[1]] |
|
return final_labels |
|
|
|
def _mosaic4(self, labels): |
|
"""Create a 2x2 image mosaic.""" |
|
mosaic_labels = [] |
|
s = self.imgsz |
|
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.border) |
|
for i in range(4): |
|
labels_patch = labels if i == 0 else labels["mix_labels"][i - 1] |
|
|
|
img = labels_patch["img"] |
|
h, w = labels_patch.pop("resized_shape") |
|
|
|
|
|
if i == 0: |
|
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) |
|
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc |
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h |
|
elif i == 1: |
|
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc |
|
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h |
|
elif i == 2: |
|
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) |
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) |
|
elif i == 3: |
|
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) |
|
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) |
|
|
|
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] |
|
padw = x1a - x1b |
|
padh = y1a - y1b |
|
|
|
labels_patch = self._update_labels(labels_patch, padw, padh) |
|
mosaic_labels.append(labels_patch) |
|
final_labels = self._cat_labels(mosaic_labels) |
|
final_labels["img"] = img4 |
|
return final_labels |
|
|
|
def _mosaic9(self, labels): |
|
"""Create a 3x3 image mosaic.""" |
|
mosaic_labels = [] |
|
s = self.imgsz |
|
hp, wp = -1, -1 |
|
for i in range(9): |
|
labels_patch = labels if i == 0 else labels["mix_labels"][i - 1] |
|
|
|
img = labels_patch["img"] |
|
h, w = labels_patch.pop("resized_shape") |
|
|
|
|
|
if i == 0: |
|
img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) |
|
h0, w0 = h, w |
|
c = s, s, s + w, s + h |
|
elif i == 1: |
|
c = s, s - h, s + w, s |
|
elif i == 2: |
|
c = s + wp, s - h, s + wp + w, s |
|
elif i == 3: |
|
c = s + w0, s, s + w0 + w, s + h |
|
elif i == 4: |
|
c = s + w0, s + hp, s + w0 + w, s + hp + h |
|
elif i == 5: |
|
c = s + w0 - w, s + h0, s + w0, s + h0 + h |
|
elif i == 6: |
|
c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h |
|
elif i == 7: |
|
c = s - w, s + h0 - h, s, s + h0 |
|
elif i == 8: |
|
c = s - w, s + h0 - hp - h, s, s + h0 - hp |
|
|
|
padw, padh = c[:2] |
|
x1, y1, x2, y2 = (max(x, 0) for x in c) |
|
|
|
|
|
img9[y1:y2, x1:x2] = img[y1 - padh :, x1 - padw :] |
|
hp, wp = h, w |
|
|
|
|
|
labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1]) |
|
mosaic_labels.append(labels_patch) |
|
final_labels = self._cat_labels(mosaic_labels) |
|
|
|
final_labels["img"] = img9[-self.border[0] : self.border[0], -self.border[1] : self.border[1]] |
|
return final_labels |
|
|
|
@staticmethod |
|
def _update_labels(labels, padw, padh): |
|
"""Update labels.""" |
|
nh, nw = labels["img"].shape[:2] |
|
labels["instances"].convert_bbox(format="xyxy") |
|
labels["instances"].denormalize(nw, nh) |
|
labels["instances"].add_padding(padw, padh) |
|
return labels |
|
|
|
def _cat_labels(self, mosaic_labels): |
|
"""Return labels with mosaic border instances clipped.""" |
|
if len(mosaic_labels) == 0: |
|
return {} |
|
cls = [] |
|
instances = [] |
|
imgsz = self.imgsz * 2 |
|
for labels in mosaic_labels: |
|
cls.append(labels["cls"]) |
|
instances.append(labels["instances"]) |
|
|
|
final_labels = { |
|
"im_file": mosaic_labels[0]["im_file"], |
|
"ori_shape": mosaic_labels[0]["ori_shape"], |
|
"resized_shape": (imgsz, imgsz), |
|
"cls": np.concatenate(cls, 0), |
|
"instances": Instances.concatenate(instances, axis=0), |
|
"mosaic_border": self.border, |
|
} |
|
final_labels["instances"].clip(imgsz, imgsz) |
|
good = final_labels["instances"].remove_zero_area_boxes() |
|
final_labels["cls"] = final_labels["cls"][good] |
|
return final_labels |
|
|
|
|
|
class MixUp(BaseMixTransform): |
|
"""Class for applying MixUp augmentation to the dataset.""" |
|
|
|
def __init__(self, dataset, pre_transform=None, p=0.0) -> None: |
|
"""Initializes MixUp object with dataset, pre_transform, and probability of applying MixUp.""" |
|
super().__init__(dataset=dataset, pre_transform=pre_transform, p=p) |
|
|
|
def get_indexes(self): |
|
"""Get a random index from the dataset.""" |
|
return random.randint(0, len(self.dataset) - 1) |
|
|
|
def _mix_transform(self, labels): |
|
"""Applies MixUp augmentation as per https://arxiv.org/pdf/1710.09412.pdf.""" |
|
r = np.random.beta(32.0, 32.0) |
|
labels2 = labels["mix_labels"][0] |
|
labels["img"] = (labels["img"] * r + labels2["img"] * (1 - r)).astype(np.uint8) |
|
labels["instances"] = Instances.concatenate([labels["instances"], labels2["instances"]], axis=0) |
|
labels["cls"] = np.concatenate([labels["cls"], labels2["cls"]], 0) |
|
return labels |
|
|
|
|
|
class RandomPerspective: |
|
""" |
|
Implements random perspective and affine transformations on images and corresponding bounding boxes, segments, and |
|
keypoints. These transformations include rotation, translation, scaling, and shearing. The class also offers the |
|
option to apply these transformations conditionally with a specified probability. |
|
|
|
Attributes: |
|
degrees (float): Degree range for random rotations. |
|
translate (float): Fraction of total width and height for random translation. |
|
scale (float): Scaling factor interval, e.g., a scale factor of 0.1 allows a resize between 90%-110%. |
|
shear (float): Shear intensity (angle in degrees). |
|
perspective (float): Perspective distortion factor. |
|
border (tuple): Tuple specifying mosaic border. |
|
pre_transform (callable): A function/transform to apply to the image before starting the random transformation. |
|
|
|
Methods: |
|
affine_transform(img, border): Applies a series of affine transformations to the image. |
|
apply_bboxes(bboxes, M): Transforms bounding boxes using the calculated affine matrix. |
|
apply_segments(segments, M): Transforms segments and generates new bounding boxes. |
|
apply_keypoints(keypoints, M): Transforms keypoints. |
|
__call__(labels): Main method to apply transformations to both images and their corresponding annotations. |
|
box_candidates(box1, box2): Filters out bounding boxes that don't meet certain criteria post-transformation. |
|
""" |
|
|
|
def __init__( |
|
self, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, border=(0, 0), pre_transform=None |
|
): |
|
"""Initializes RandomPerspective object with transformation parameters.""" |
|
|
|
self.degrees = degrees |
|
self.translate = translate |
|
self.scale = scale |
|
self.shear = shear |
|
self.perspective = perspective |
|
self.border = border |
|
self.pre_transform = pre_transform |
|
|
|
def affine_transform(self, img, border): |
|
""" |
|
Applies a sequence of affine transformations centered around the image center. |
|
|
|
Args: |
|
img (ndarray): Input image. |
|
border (tuple): Border dimensions. |
|
|
|
Returns: |
|
img (ndarray): Transformed image. |
|
M (ndarray): Transformation matrix. |
|
s (float): Scale factor. |
|
""" |
|
|
|
|
|
C = np.eye(3, dtype=np.float32) |
|
|
|
C[0, 2] = -img.shape[1] / 2 |
|
C[1, 2] = -img.shape[0] / 2 |
|
|
|
|
|
P = np.eye(3, dtype=np.float32) |
|
P[2, 0] = random.uniform(-self.perspective, self.perspective) |
|
P[2, 1] = random.uniform(-self.perspective, self.perspective) |
|
|
|
|
|
R = np.eye(3, dtype=np.float32) |
|
a = random.uniform(-self.degrees, self.degrees) |
|
|
|
s = random.uniform(1 - self.scale, 1 + self.scale) |
|
|
|
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) |
|
|
|
|
|
S = np.eye(3, dtype=np.float32) |
|
S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) |
|
S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) |
|
|
|
|
|
T = np.eye(3, dtype=np.float32) |
|
T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0] |
|
T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1] |
|
|
|
|
|
M = T @ S @ R @ P @ C |
|
|
|
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): |
|
if self.perspective: |
|
img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114)) |
|
else: |
|
img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114)) |
|
return img, M, s |
|
|
|
def apply_bboxes(self, bboxes, M): |
|
""" |
|
Apply affine to bboxes only. |
|
|
|
Args: |
|
bboxes (ndarray): list of bboxes, xyxy format, with shape (num_bboxes, 4). |
|
M (ndarray): affine matrix. |
|
|
|
Returns: |
|
new_bboxes (ndarray): bboxes after affine, [num_bboxes, 4]. |
|
""" |
|
n = len(bboxes) |
|
if n == 0: |
|
return bboxes |
|
|
|
xy = np.ones((n * 4, 3), dtype=bboxes.dtype) |
|
xy[:, :2] = bboxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) |
|
xy = xy @ M.T |
|
xy = (xy[:, :2] / xy[:, 2:3] if self.perspective else xy[:, :2]).reshape(n, 8) |
|
|
|
|
|
x = xy[:, [0, 2, 4, 6]] |
|
y = xy[:, [1, 3, 5, 7]] |
|
return np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1)), dtype=bboxes.dtype).reshape(4, n).T |
|
|
|
def apply_segments(self, segments, M): |
|
""" |
|
Apply affine to segments and generate new bboxes from segments. |
|
|
|
Args: |
|
segments (ndarray): list of segments, [num_samples, 500, 2]. |
|
M (ndarray): affine matrix. |
|
|
|
Returns: |
|
new_segments (ndarray): list of segments after affine, [num_samples, 500, 2]. |
|
new_bboxes (ndarray): bboxes after affine, [N, 4]. |
|
""" |
|
n, num = segments.shape[:2] |
|
if n == 0: |
|
return [], segments |
|
|
|
xy = np.ones((n * num, 3), dtype=segments.dtype) |
|
segments = segments.reshape(-1, 2) |
|
xy[:, :2] = segments |
|
xy = xy @ M.T |
|
xy = xy[:, :2] / xy[:, 2:3] |
|
segments = xy.reshape(n, -1, 2) |
|
bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0) |
|
segments[..., 0] = segments[..., 0].clip(bboxes[:, 0:1], bboxes[:, 2:3]) |
|
segments[..., 1] = segments[..., 1].clip(bboxes[:, 1:2], bboxes[:, 3:4]) |
|
return bboxes, segments |
|
|
|
def apply_keypoints(self, keypoints, M): |
|
""" |
|
Apply affine to keypoints. |
|
|
|
Args: |
|
keypoints (ndarray): keypoints, [N, 17, 3]. |
|
M (ndarray): affine matrix. |
|
|
|
Returns: |
|
new_keypoints (ndarray): keypoints after affine, [N, 17, 3]. |
|
""" |
|
n, nkpt = keypoints.shape[:2] |
|
if n == 0: |
|
return keypoints |
|
xy = np.ones((n * nkpt, 3), dtype=keypoints.dtype) |
|
visible = keypoints[..., 2].reshape(n * nkpt, 1) |
|
xy[:, :2] = keypoints[..., :2].reshape(n * nkpt, 2) |
|
xy = xy @ M.T |
|
xy = xy[:, :2] / xy[:, 2:3] |
|
out_mask = (xy[:, 0] < 0) | (xy[:, 1] < 0) | (xy[:, 0] > self.size[0]) | (xy[:, 1] > self.size[1]) |
|
visible[out_mask] = 0 |
|
return np.concatenate([xy, visible], axis=-1).reshape(n, nkpt, 3) |
|
|
|
def __call__(self, labels): |
|
""" |
|
Affine images and targets. |
|
|
|
Args: |
|
labels (dict): a dict of `bboxes`, `segments`, `keypoints`. |
|
""" |
|
if self.pre_transform and "mosaic_border" not in labels: |
|
labels = self.pre_transform(labels) |
|
labels.pop("ratio_pad", None) |
|
|
|
img = labels["img"] |
|
cls = labels["cls"] |
|
instances = labels.pop("instances") |
|
|
|
instances.convert_bbox(format="xyxy") |
|
instances.denormalize(*img.shape[:2][::-1]) |
|
|
|
border = labels.pop("mosaic_border", self.border) |
|
self.size = img.shape[1] + border[1] * 2, img.shape[0] + border[0] * 2 |
|
|
|
|
|
img, M, scale = self.affine_transform(img, border) |
|
|
|
bboxes = self.apply_bboxes(instances.bboxes, M) |
|
|
|
segments = instances.segments |
|
keypoints = instances.keypoints |
|
|
|
if len(segments): |
|
bboxes, segments = self.apply_segments(segments, M) |
|
|
|
if keypoints is not None: |
|
keypoints = self.apply_keypoints(keypoints, M) |
|
new_instances = Instances(bboxes, segments, keypoints, bbox_format="xyxy", normalized=False) |
|
|
|
new_instances.clip(*self.size) |
|
|
|
|
|
instances.scale(scale_w=scale, scale_h=scale, bbox_only=True) |
|
|
|
i = self.box_candidates( |
|
box1=instances.bboxes.T, box2=new_instances.bboxes.T, area_thr=0.01 if len(segments) else 0.10 |
|
) |
|
labels["instances"] = new_instances[i] |
|
labels["cls"] = cls[i] |
|
labels["img"] = img |
|
labels["resized_shape"] = img.shape[:2] |
|
return labels |
|
|
|
def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): |
|
""" |
|
Compute box candidates based on a set of thresholds. This method compares the characteristics of the boxes |
|
before and after augmentation to decide whether a box is a candidate for further processing. |
|
|
|
Args: |
|
box1 (numpy.ndarray): The 4,n bounding box before augmentation, represented as [x1, y1, x2, y2]. |
|
box2 (numpy.ndarray): The 4,n bounding box after augmentation, represented as [x1, y1, x2, y2]. |
|
wh_thr (float, optional): The width and height threshold in pixels. Default is 2. |
|
ar_thr (float, optional): The aspect ratio threshold. Default is 100. |
|
area_thr (float, optional): The area ratio threshold. Default is 0.1. |
|
eps (float, optional): A small epsilon value to prevent division by zero. Default is 1e-16. |
|
|
|
Returns: |
|
(numpy.ndarray): A boolean array indicating which boxes are candidates based on the given thresholds. |
|
""" |
|
w1, h1 = box1[2] - box1[0], box1[3] - box1[1] |
|
w2, h2 = box2[2] - box2[0], box2[3] - box2[1] |
|
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) |
|
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) |
|
|
|
|
|
class RandomHSV: |
|
""" |
|
This class is responsible for performing random adjustments to the Hue, Saturation, and Value (HSV) channels of an |
|
image. |
|
|
|
The adjustments are random but within limits set by hgain, sgain, and vgain. |
|
""" |
|
|
|
def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None: |
|
""" |
|
Initialize RandomHSV class with gains for each HSV channel. |
|
|
|
Args: |
|
hgain (float, optional): Maximum variation for hue. Default is 0.5. |
|
sgain (float, optional): Maximum variation for saturation. Default is 0.5. |
|
vgain (float, optional): Maximum variation for value. Default is 0.5. |
|
""" |
|
self.hgain = hgain |
|
self.sgain = sgain |
|
self.vgain = vgain |
|
|
|
def __call__(self, labels): |
|
""" |
|
Applies random HSV augmentation to an image within the predefined limits. |
|
|
|
The modified image replaces the original image in the input 'labels' dict. |
|
""" |
|
img = labels["img"] |
|
if self.hgain or self.sgain or self.vgain: |
|
r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1 |
|
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) |
|
dtype = img.dtype |
|
|
|
x = np.arange(0, 256, dtype=r.dtype) |
|
lut_hue = ((x * r[0]) % 180).astype(dtype) |
|
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) |
|
lut_val = np.clip(x * r[2], 0, 255).astype(dtype) |
|
|
|
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) |
|
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img) |
|
return labels |
|
|
|
|
|
class RandomFlip: |
|
""" |
|
Applies a random horizontal or vertical flip to an image with a given probability. |
|
|
|
Also updates any instances (bounding boxes, keypoints, etc.) accordingly. |
|
""" |
|
|
|
def __init__(self, p=0.5, direction="horizontal", flip_idx=None) -> None: |
|
""" |
|
Initializes the RandomFlip class with probability and direction. |
|
|
|
Args: |
|
p (float, optional): The probability of applying the flip. Must be between 0 and 1. Default is 0.5. |
|
direction (str, optional): The direction to apply the flip. Must be 'horizontal' or 'vertical'. |
|
Default is 'horizontal'. |
|
flip_idx (array-like, optional): Index mapping for flipping keypoints, if any. |
|
""" |
|
assert direction in ["horizontal", "vertical"], f"Support direction `horizontal` or `vertical`, got {direction}" |
|
assert 0 <= p <= 1.0 |
|
|
|
self.p = p |
|
self.direction = direction |
|
self.flip_idx = flip_idx |
|
|
|
def __call__(self, labels): |
|
""" |
|
Applies random flip to an image and updates any instances like bounding boxes or keypoints accordingly. |
|
|
|
Args: |
|
labels (dict): A dictionary containing the keys 'img' and 'instances'. 'img' is the image to be flipped. |
|
'instances' is an object containing bounding boxes and optionally keypoints. |
|
|
|
Returns: |
|
(dict): The same dict with the flipped image and updated instances under the 'img' and 'instances' keys. |
|
""" |
|
img = labels["img"] |
|
instances = labels.pop("instances") |
|
instances.convert_bbox(format="xywh") |
|
h, w = img.shape[:2] |
|
h = 1 if instances.normalized else h |
|
w = 1 if instances.normalized else w |
|
|
|
|
|
if self.direction == "vertical" and random.random() < self.p: |
|
img = np.flipud(img) |
|
instances.flipud(h) |
|
if self.direction == "horizontal" and random.random() < self.p: |
|
img = np.fliplr(img) |
|
instances.fliplr(w) |
|
|
|
if self.flip_idx is not None and instances.keypoints is not None: |
|
instances.keypoints = np.ascontiguousarray(instances.keypoints[:, self.flip_idx, :]) |
|
labels["img"] = np.ascontiguousarray(img) |
|
labels["instances"] = instances |
|
return labels |
|
|
|
|
|
class LetterBox: |
|
"""Resize image and padding for detection, instance segmentation, pose.""" |
|
|
|
def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, center=True, stride=32): |
|
"""Initialize LetterBox object with specific parameters.""" |
|
self.new_shape = new_shape |
|
self.auto = auto |
|
self.scaleFill = scaleFill |
|
self.scaleup = scaleup |
|
self.stride = stride |
|
self.center = center |
|
|
|
def __call__(self, labels=None, image=None): |
|
"""Return updated labels and image with added border.""" |
|
if labels is None: |
|
labels = {} |
|
img = labels.get("img") if image is None else image |
|
shape = img.shape[:2] |
|
new_shape = labels.pop("rect_shape", self.new_shape) |
|
if isinstance(new_shape, int): |
|
new_shape = (new_shape, new_shape) |
|
|
|
|
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) |
|
if not self.scaleup: |
|
r = min(r, 1.0) |
|
|
|
|
|
ratio = r, r |
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) |
|
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] |
|
if self.auto: |
|
dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) |
|
elif self.scaleFill: |
|
dw, dh = 0.0, 0.0 |
|
new_unpad = (new_shape[1], new_shape[0]) |
|
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] |
|
|
|
if self.center: |
|
dw /= 2 |
|
dh /= 2 |
|
|
|
if shape[::-1] != new_unpad: |
|
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) |
|
top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1)) |
|
left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1)) |
|
img = cv2.copyMakeBorder( |
|
img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114) |
|
) |
|
if labels.get("ratio_pad"): |
|
labels["ratio_pad"] = (labels["ratio_pad"], (left, top)) |
|
|
|
if len(labels): |
|
labels = self._update_labels(labels, ratio, dw, dh) |
|
labels["img"] = img |
|
labels["resized_shape"] = new_shape |
|
return labels |
|
else: |
|
return img |
|
|
|
def _update_labels(self, labels, ratio, padw, padh): |
|
"""Update labels.""" |
|
labels["instances"].convert_bbox(format="xyxy") |
|
labels["instances"].denormalize(*labels["img"].shape[:2][::-1]) |
|
labels["instances"].scale(*ratio) |
|
labels["instances"].add_padding(padw, padh) |
|
return labels |
|
|
|
|
|
class CopyPaste: |
|
""" |
|
Implements the Copy-Paste augmentation as described in the paper https://arxiv.org/abs/2012.07177. This class is |
|
responsible for applying the Copy-Paste augmentation on images and their corresponding instances. |
|
""" |
|
|
|
def __init__(self, p=0.5) -> None: |
|
""" |
|
Initializes the CopyPaste class with a given probability. |
|
|
|
Args: |
|
p (float, optional): The probability of applying the Copy-Paste augmentation. Must be between 0 and 1. |
|
Default is 0.5. |
|
""" |
|
self.p = p |
|
|
|
def __call__(self, labels): |
|
""" |
|
Applies the Copy-Paste augmentation to the given image and instances. |
|
|
|
Args: |
|
labels (dict): A dictionary containing: |
|
- 'img': The image to augment. |
|
- 'cls': Class labels associated with the instances. |
|
- 'instances': Object containing bounding boxes, and optionally, keypoints and segments. |
|
|
|
Returns: |
|
(dict): Dict with augmented image and updated instances under the 'img', 'cls', and 'instances' keys. |
|
|
|
Notes: |
|
1. Instances are expected to have 'segments' as one of their attributes for this augmentation to work. |
|
2. This method modifies the input dictionary 'labels' in place. |
|
""" |
|
im = labels["img"] |
|
cls = labels["cls"] |
|
h, w = im.shape[:2] |
|
instances = labels.pop("instances") |
|
instances.convert_bbox(format="xyxy") |
|
instances.denormalize(w, h) |
|
if self.p and len(instances.segments): |
|
n = len(instances) |
|
_, w, _ = im.shape |
|
im_new = np.zeros(im.shape, np.uint8) |
|
|
|
|
|
ins_flip = deepcopy(instances) |
|
ins_flip.fliplr(w) |
|
|
|
ioa = bbox_ioa(ins_flip.bboxes, instances.bboxes) |
|
indexes = np.nonzero((ioa < 0.30).all(1))[0] |
|
n = len(indexes) |
|
for j in random.sample(list(indexes), k=round(self.p * n)): |
|
cls = np.concatenate((cls, cls[[j]]), axis=0) |
|
instances = Instances.concatenate((instances, ins_flip[[j]]), axis=0) |
|
cv2.drawContours(im_new, instances.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED) |
|
|
|
result = cv2.flip(im, 1) |
|
i = cv2.flip(im_new, 1).astype(bool) |
|
im[i] = result[i] |
|
|
|
labels["img"] = im |
|
labels["cls"] = cls |
|
labels["instances"] = instances |
|
return labels |
|
|
|
|
|
class Albumentations: |
|
""" |
|
Albumentations transformations. |
|
|
|
Optional, uninstall package to disable. Applies Blur, Median Blur, convert to grayscale, Contrast Limited Adaptive |
|
Histogram Equalization, random change of brightness and contrast, RandomGamma and lowering of image quality by |
|
compression. |
|
""" |
|
|
|
def __init__(self, p=1.0): |
|
"""Initialize the transform object for YOLO bbox formatted params.""" |
|
self.p = p |
|
self.transform = None |
|
prefix = colorstr("albumentations: ") |
|
try: |
|
import albumentations as A |
|
|
|
check_version(A.__version__, "1.0.3", hard=True) |
|
|
|
|
|
T = [ |
|
A.Blur(p=0.01), |
|
A.MedianBlur(p=0.01), |
|
A.ToGray(p=0.01), |
|
A.CLAHE(p=0.01), |
|
A.RandomBrightnessContrast(p=0.0), |
|
A.RandomGamma(p=0.0), |
|
A.ImageCompression(quality_lower=75, p=0.0), |
|
] |
|
self.transform = A.Compose(T, bbox_params=A.BboxParams(format="yolo", label_fields=["class_labels"])) |
|
|
|
LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p)) |
|
except ImportError: |
|
pass |
|
except Exception as e: |
|
LOGGER.info(f"{prefix}{e}") |
|
|
|
def __call__(self, labels): |
|
"""Generates object detections and returns a dictionary with detection results.""" |
|
im = labels["img"] |
|
cls = labels["cls"] |
|
if len(cls): |
|
labels["instances"].convert_bbox("xywh") |
|
labels["instances"].normalize(*im.shape[:2][::-1]) |
|
bboxes = labels["instances"].bboxes |
|
|
|
if self.transform and random.random() < self.p: |
|
new = self.transform(image=im, bboxes=bboxes, class_labels=cls) |
|
if len(new["class_labels"]) > 0: |
|
labels["img"] = new["image"] |
|
labels["cls"] = np.array(new["class_labels"]) |
|
bboxes = np.array(new["bboxes"], dtype=np.float32) |
|
labels["instances"].update(bboxes=bboxes) |
|
return labels |
|
|
|
|
|
|
|
class Format: |
|
""" |
|
Formats image annotations for object detection, instance segmentation, and pose estimation tasks. The class |
|
standardizes the image and instance annotations to be used by the `collate_fn` in PyTorch DataLoader. |
|
|
|
Attributes: |
|
bbox_format (str): Format for bounding boxes. Default is 'xywh'. |
|
normalize (bool): Whether to normalize bounding boxes. Default is True. |
|
return_mask (bool): Return instance masks for segmentation. Default is False. |
|
return_keypoint (bool): Return keypoints for pose estimation. Default is False. |
|
mask_ratio (int): Downsample ratio for masks. Default is 4. |
|
mask_overlap (bool): Whether to overlap masks. Default is True. |
|
batch_idx (bool): Keep batch indexes. Default is True. |
|
bgr (float): The probability to return BGR images. Default is 0.0. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
bbox_format="xywh", |
|
normalize=True, |
|
return_mask=False, |
|
return_keypoint=False, |
|
return_obb=False, |
|
mask_ratio=4, |
|
mask_overlap=True, |
|
batch_idx=True, |
|
bgr=0.0, |
|
): |
|
"""Initializes the Format class with given parameters.""" |
|
self.bbox_format = bbox_format |
|
self.normalize = normalize |
|
self.return_mask = return_mask |
|
self.return_keypoint = return_keypoint |
|
self.return_obb = return_obb |
|
self.mask_ratio = mask_ratio |
|
self.mask_overlap = mask_overlap |
|
self.batch_idx = batch_idx |
|
self.bgr = bgr |
|
|
|
def __call__(self, labels): |
|
"""Return formatted image, classes, bounding boxes & keypoints to be used by 'collate_fn'.""" |
|
img = labels.pop("img") |
|
h, w = img.shape[:2] |
|
cls = labels.pop("cls") |
|
instances = labels.pop("instances") |
|
instances.convert_bbox(format=self.bbox_format) |
|
instances.denormalize(w, h) |
|
nl = len(instances) |
|
|
|
if self.return_mask: |
|
if nl: |
|
masks, instances, cls = self._format_segments(instances, cls, w, h) |
|
masks = torch.from_numpy(masks) |
|
else: |
|
masks = torch.zeros( |
|
1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio, img.shape[1] // self.mask_ratio |
|
) |
|
labels["masks"] = masks |
|
if self.normalize: |
|
instances.normalize(w, h) |
|
labels["img"] = self._format_img(img) |
|
labels["cls"] = torch.from_numpy(cls) if nl else torch.zeros(nl) |
|
labels["bboxes"] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4)) |
|
if self.return_keypoint: |
|
labels["keypoints"] = torch.from_numpy(instances.keypoints) |
|
if self.return_obb: |
|
labels["bboxes"] = ( |
|
xyxyxyxy2xywhr(torch.from_numpy(instances.segments)) if len(instances.segments) else torch.zeros((0, 5)) |
|
) |
|
|
|
if self.batch_idx: |
|
labels["batch_idx"] = torch.zeros(nl) |
|
return labels |
|
|
|
def _format_img(self, img): |
|
"""Format the image for YOLO from Numpy array to PyTorch tensor.""" |
|
if len(img.shape) < 3: |
|
img = np.expand_dims(img, -1) |
|
img = img.transpose(2, 0, 1) |
|
img = np.ascontiguousarray(img[::-1] if random.uniform(0, 1) > self.bgr else img) |
|
img = torch.from_numpy(img) |
|
return img |
|
|
|
def _format_segments(self, instances, cls, w, h): |
|
"""Convert polygon points to bitmap.""" |
|
segments = instances.segments |
|
if self.mask_overlap: |
|
masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio) |
|
masks = masks[None] |
|
instances = instances[sorted_idx] |
|
cls = cls[sorted_idx] |
|
else: |
|
masks = polygons2masks((h, w), segments, color=1, downsample_ratio=self.mask_ratio) |
|
|
|
return masks, instances, cls |
|
|
|
|
|
def v8_transforms(dataset, imgsz, hyp, stretch=False): |
|
"""Convert images to a size suitable for YOLOv8 training.""" |
|
pre_transform = Compose( |
|
[ |
|
Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic), |
|
CopyPaste(p=hyp.copy_paste), |
|
RandomPerspective( |
|
degrees=hyp.degrees, |
|
translate=hyp.translate, |
|
scale=hyp.scale, |
|
shear=hyp.shear, |
|
perspective=hyp.perspective, |
|
pre_transform=None if stretch else LetterBox(new_shape=(imgsz, imgsz)), |
|
), |
|
] |
|
) |
|
flip_idx = dataset.data.get("flip_idx", []) |
|
if dataset.use_keypoints: |
|
kpt_shape = dataset.data.get("kpt_shape", None) |
|
if len(flip_idx) == 0 and hyp.fliplr > 0.0: |
|
hyp.fliplr = 0.0 |
|
LOGGER.warning("WARNING β οΈ No 'flip_idx' array defined in data.yaml, setting augmentation 'fliplr=0.0'") |
|
elif flip_idx and (len(flip_idx) != kpt_shape[0]): |
|
raise ValueError(f"data.yaml flip_idx={flip_idx} length must be equal to kpt_shape[0]={kpt_shape[0]}") |
|
|
|
return Compose( |
|
[ |
|
pre_transform, |
|
MixUp(dataset, pre_transform=pre_transform, p=hyp.mixup), |
|
Albumentations(p=1.0), |
|
RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v), |
|
RandomFlip(direction="vertical", p=hyp.flipud), |
|
RandomFlip(direction="horizontal", p=hyp.fliplr, flip_idx=flip_idx), |
|
] |
|
) |
|
|
|
|
|
|
|
def classify_transforms( |
|
size=224, |
|
mean=DEFAULT_MEAN, |
|
std=DEFAULT_STD, |
|
interpolation: T.InterpolationMode = T.InterpolationMode.BILINEAR, |
|
crop_fraction: float = DEFAULT_CROP_FTACTION, |
|
): |
|
""" |
|
Classification transforms for evaluation/inference. Inspired by timm/data/transforms_factory.py. |
|
|
|
Args: |
|
size (int): image size |
|
mean (tuple): mean values of RGB channels |
|
std (tuple): std values of RGB channels |
|
interpolation (T.InterpolationMode): interpolation mode. default is T.InterpolationMode.BILINEAR. |
|
crop_fraction (float): fraction of image to crop. default is 1.0. |
|
|
|
Returns: |
|
(T.Compose): torchvision transforms |
|
""" |
|
|
|
if isinstance(size, (tuple, list)): |
|
assert len(size) == 2 |
|
scale_size = tuple(math.floor(x / crop_fraction) for x in size) |
|
else: |
|
scale_size = math.floor(size / crop_fraction) |
|
scale_size = (scale_size, scale_size) |
|
|
|
|
|
if scale_size[0] == scale_size[1]: |
|
|
|
tfl = [T.Resize(scale_size[0], interpolation=interpolation)] |
|
else: |
|
|
|
tfl = [T.Resize(scale_size)] |
|
tfl += [T.CenterCrop(size)] |
|
|
|
tfl += [ |
|
T.ToTensor(), |
|
T.Normalize( |
|
mean=torch.tensor(mean), |
|
std=torch.tensor(std), |
|
), |
|
] |
|
|
|
return T.Compose(tfl) |
|
|
|
|
|
|
|
def classify_augmentations( |
|
size=224, |
|
mean=DEFAULT_MEAN, |
|
std=DEFAULT_STD, |
|
scale=None, |
|
ratio=None, |
|
hflip=0.5, |
|
vflip=0.0, |
|
auto_augment=None, |
|
hsv_h=0.015, |
|
hsv_s=0.4, |
|
hsv_v=0.4, |
|
force_color_jitter=False, |
|
erasing=0.0, |
|
interpolation: T.InterpolationMode = T.InterpolationMode.BILINEAR, |
|
): |
|
""" |
|
Classification transforms with augmentation for training. Inspired by timm/data/transforms_factory.py. |
|
|
|
Args: |
|
size (int): image size |
|
scale (tuple): scale range of the image. default is (0.08, 1.0) |
|
ratio (tuple): aspect ratio range of the image. default is (3./4., 4./3.) |
|
mean (tuple): mean values of RGB channels |
|
std (tuple): std values of RGB channels |
|
hflip (float): probability of horizontal flip |
|
vflip (float): probability of vertical flip |
|
auto_augment (str): auto augmentation policy. can be 'randaugment', 'augmix', 'autoaugment' or None. |
|
hsv_h (float): image HSV-Hue augmentation (fraction) |
|
hsv_s (float): image HSV-Saturation augmentation (fraction) |
|
hsv_v (float): image HSV-Value augmentation (fraction) |
|
force_color_jitter (bool): force to apply color jitter even if auto augment is enabled |
|
erasing (float): probability of random erasing |
|
interpolation (T.InterpolationMode): interpolation mode. default is T.InterpolationMode.BILINEAR. |
|
|
|
Returns: |
|
(T.Compose): torchvision transforms |
|
""" |
|
|
|
if not isinstance(size, int): |
|
raise TypeError(f"classify_transforms() size {size} must be integer, not (list, tuple)") |
|
scale = tuple(scale or (0.08, 1.0)) |
|
ratio = tuple(ratio or (3.0 / 4.0, 4.0 / 3.0)) |
|
primary_tfl = [T.RandomResizedCrop(size, scale=scale, ratio=ratio, interpolation=interpolation)] |
|
if hflip > 0.0: |
|
primary_tfl += [T.RandomHorizontalFlip(p=hflip)] |
|
if vflip > 0.0: |
|
primary_tfl += [T.RandomVerticalFlip(p=vflip)] |
|
|
|
secondary_tfl = [] |
|
disable_color_jitter = False |
|
if auto_augment: |
|
assert isinstance(auto_augment, str) |
|
|
|
|
|
disable_color_jitter = not force_color_jitter |
|
|
|
if auto_augment == "randaugment": |
|
if TORCHVISION_0_11: |
|
secondary_tfl += [T.RandAugment(interpolation=interpolation)] |
|
else: |
|
LOGGER.warning('"auto_augment=randaugment" requires torchvision >= 0.11.0. Disabling it.') |
|
|
|
elif auto_augment == "augmix": |
|
if TORCHVISION_0_13: |
|
secondary_tfl += [T.AugMix(interpolation=interpolation)] |
|
else: |
|
LOGGER.warning('"auto_augment=augmix" requires torchvision >= 0.13.0. Disabling it.') |
|
|
|
elif auto_augment == "autoaugment": |
|
if TORCHVISION_0_10: |
|
secondary_tfl += [T.AutoAugment(interpolation=interpolation)] |
|
else: |
|
LOGGER.warning('"auto_augment=autoaugment" requires torchvision >= 0.10.0. Disabling it.') |
|
|
|
else: |
|
raise ValueError( |
|
f'Invalid auto_augment policy: {auto_augment}. Should be one of "randaugment", ' |
|
f'"augmix", "autoaugment" or None' |
|
) |
|
|
|
if not disable_color_jitter: |
|
secondary_tfl += [T.ColorJitter(brightness=hsv_v, contrast=hsv_v, saturation=hsv_s, hue=hsv_h)] |
|
|
|
final_tfl = [ |
|
T.ToTensor(), |
|
T.Normalize(mean=torch.tensor(mean), std=torch.tensor(std)), |
|
T.RandomErasing(p=erasing, inplace=True), |
|
] |
|
|
|
return T.Compose(primary_tfl + secondary_tfl + final_tfl) |
|
|
|
|
|
|
|
class ClassifyLetterBox: |
|
""" |
|
YOLOv8 LetterBox class for image preprocessing, designed to be part of a transformation pipeline, e.g., |
|
T.Compose([LetterBox(size), ToTensor()]). |
|
|
|
Attributes: |
|
h (int): Target height of the image. |
|
w (int): Target width of the image. |
|
auto (bool): If True, automatically solves for short side using stride. |
|
stride (int): The stride value, used when 'auto' is True. |
|
""" |
|
|
|
def __init__(self, size=(640, 640), auto=False, stride=32): |
|
""" |
|
Initializes the ClassifyLetterBox class with a target size, auto-flag, and stride. |
|
|
|
Args: |
|
size (Union[int, Tuple[int, int]]): The target dimensions (height, width) for the letterbox. |
|
auto (bool): If True, automatically calculates the short side based on stride. |
|
stride (int): The stride value, used when 'auto' is True. |
|
""" |
|
super().__init__() |
|
self.h, self.w = (size, size) if isinstance(size, int) else size |
|
self.auto = auto |
|
self.stride = stride |
|
|
|
def __call__(self, im): |
|
""" |
|
Resizes the image and pads it with a letterbox method. |
|
|
|
Args: |
|
im (numpy.ndarray): The input image as a numpy array of shape HWC. |
|
|
|
Returns: |
|
(numpy.ndarray): The letterboxed and resized image as a numpy array. |
|
""" |
|
imh, imw = im.shape[:2] |
|
r = min(self.h / imh, self.w / imw) |
|
h, w = round(imh * r), round(imw * r) |
|
|
|
|
|
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else (self.h, self.w) |
|
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1) |
|
|
|
|
|
im_out = np.full((hs, ws, 3), 114, dtype=im.dtype) |
|
im_out[top : top + h, left : left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR) |
|
return im_out |
|
|
|
|
|
|
|
class CenterCrop: |
|
"""YOLOv8 CenterCrop class for image preprocessing, designed to be part of a transformation pipeline, e.g., |
|
T.Compose([CenterCrop(size), ToTensor()]). |
|
""" |
|
|
|
def __init__(self, size=640): |
|
"""Converts an image from numpy array to PyTorch tensor.""" |
|
super().__init__() |
|
self.h, self.w = (size, size) if isinstance(size, int) else size |
|
|
|
def __call__(self, im): |
|
""" |
|
Resizes and crops the center of the image using a letterbox method. |
|
|
|
Args: |
|
im (numpy.ndarray): The input image as a numpy array of shape HWC. |
|
|
|
Returns: |
|
(numpy.ndarray): The center-cropped and resized image as a numpy array. |
|
""" |
|
imh, imw = im.shape[:2] |
|
m = min(imh, imw) |
|
top, left = (imh - m) // 2, (imw - m) // 2 |
|
return cv2.resize(im[top : top + m, left : left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR) |
|
|
|
|
|
|
|
class ToTensor: |
|
"""YOLOv8 ToTensor class for image preprocessing, i.e., T.Compose([LetterBox(size), ToTensor()]).""" |
|
|
|
def __init__(self, half=False): |
|
"""Initialize YOLOv8 ToTensor object with optional half-precision support.""" |
|
super().__init__() |
|
self.half = half |
|
|
|
def __call__(self, im): |
|
""" |
|
Transforms an image from a numpy array to a PyTorch tensor, applying optional half-precision and normalization. |
|
|
|
Args: |
|
im (numpy.ndarray): Input image as a numpy array with shape (H, W, C) in BGR order. |
|
|
|
Returns: |
|
(torch.Tensor): The transformed image as a PyTorch tensor in float32 or float16, normalized to [0, 1]. |
|
""" |
|
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) |
|
im = torch.from_numpy(im) |
|
im = im.half() if self.half else im.float() |
|
im /= 255.0 |
|
return im |
|
|