|
|
|
|
|
import json |
|
from collections import defaultdict |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
from ultralytics.utils import LOGGER, TQDM |
|
from ultralytics.utils.files import increment_path |
|
|
|
|
|
def coco91_to_coco80_class(): |
|
""" |
|
Converts 91-index COCO class IDs to 80-index COCO class IDs. |
|
|
|
Returns: |
|
(list): A list of 91 class IDs where the index represents the 80-index class ID and the value is the |
|
corresponding 91-index class ID. |
|
""" |
|
return [ |
|
0, |
|
1, |
|
2, |
|
3, |
|
4, |
|
5, |
|
6, |
|
7, |
|
8, |
|
9, |
|
10, |
|
None, |
|
11, |
|
12, |
|
13, |
|
14, |
|
15, |
|
16, |
|
17, |
|
18, |
|
19, |
|
20, |
|
21, |
|
22, |
|
23, |
|
None, |
|
24, |
|
25, |
|
None, |
|
None, |
|
26, |
|
27, |
|
28, |
|
29, |
|
30, |
|
31, |
|
32, |
|
33, |
|
34, |
|
35, |
|
36, |
|
37, |
|
38, |
|
39, |
|
None, |
|
40, |
|
41, |
|
42, |
|
43, |
|
44, |
|
45, |
|
46, |
|
47, |
|
48, |
|
49, |
|
50, |
|
51, |
|
52, |
|
53, |
|
54, |
|
55, |
|
56, |
|
57, |
|
58, |
|
59, |
|
None, |
|
60, |
|
None, |
|
None, |
|
61, |
|
None, |
|
62, |
|
63, |
|
64, |
|
65, |
|
66, |
|
67, |
|
68, |
|
69, |
|
70, |
|
71, |
|
72, |
|
None, |
|
73, |
|
74, |
|
75, |
|
76, |
|
77, |
|
78, |
|
79, |
|
None, |
|
] |
|
|
|
|
|
def coco80_to_coco91_class(): |
|
""" |
|
Converts 80-index (val2014) to 91-index (paper). |
|
For details see https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/. |
|
|
|
Example: |
|
```python |
|
import numpy as np |
|
|
|
a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') |
|
b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') |
|
x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco |
|
x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet |
|
``` |
|
""" |
|
return [ |
|
1, |
|
2, |
|
3, |
|
4, |
|
5, |
|
6, |
|
7, |
|
8, |
|
9, |
|
10, |
|
11, |
|
13, |
|
14, |
|
15, |
|
16, |
|
17, |
|
18, |
|
19, |
|
20, |
|
21, |
|
22, |
|
23, |
|
24, |
|
25, |
|
27, |
|
28, |
|
31, |
|
32, |
|
33, |
|
34, |
|
35, |
|
36, |
|
37, |
|
38, |
|
39, |
|
40, |
|
41, |
|
42, |
|
43, |
|
44, |
|
46, |
|
47, |
|
48, |
|
49, |
|
50, |
|
51, |
|
52, |
|
53, |
|
54, |
|
55, |
|
56, |
|
57, |
|
58, |
|
59, |
|
60, |
|
61, |
|
62, |
|
63, |
|
64, |
|
65, |
|
67, |
|
70, |
|
72, |
|
73, |
|
74, |
|
75, |
|
76, |
|
77, |
|
78, |
|
79, |
|
80, |
|
81, |
|
82, |
|
84, |
|
85, |
|
86, |
|
87, |
|
88, |
|
89, |
|
90, |
|
] |
|
|
|
|
|
def convert_coco( |
|
labels_dir="../coco/annotations/", |
|
save_dir="coco_converted/", |
|
use_segments=False, |
|
use_keypoints=False, |
|
cls91to80=True, |
|
): |
|
""" |
|
Converts COCO dataset annotations to a YOLO annotation format suitable for training YOLO models. |
|
|
|
Args: |
|
labels_dir (str, optional): Path to directory containing COCO dataset annotation files. |
|
save_dir (str, optional): Path to directory to save results to. |
|
use_segments (bool, optional): Whether to include segmentation masks in the output. |
|
use_keypoints (bool, optional): Whether to include keypoint annotations in the output. |
|
cls91to80 (bool, optional): Whether to map 91 COCO class IDs to the corresponding 80 COCO class IDs. |
|
|
|
Example: |
|
```python |
|
from ultralytics.data.converter import convert_coco |
|
|
|
convert_coco('../datasets/coco/annotations/', use_segments=True, use_keypoints=False, cls91to80=True) |
|
``` |
|
|
|
Output: |
|
Generates output files in the specified output directory. |
|
""" |
|
|
|
|
|
save_dir = increment_path(save_dir) |
|
for p in save_dir / "labels", save_dir / "images": |
|
p.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
coco80 = coco91_to_coco80_class() |
|
|
|
|
|
for json_file in sorted(Path(labels_dir).resolve().glob("*.json")): |
|
fn = Path(save_dir) / "labels" / json_file.stem.replace("instances_", "") |
|
fn.mkdir(parents=True, exist_ok=True) |
|
with open(json_file) as f: |
|
data = json.load(f) |
|
|
|
|
|
images = {f'{x["id"]:d}': x for x in data["images"]} |
|
|
|
imgToAnns = defaultdict(list) |
|
for ann in data["annotations"]: |
|
imgToAnns[ann["image_id"]].append(ann) |
|
|
|
|
|
for img_id, anns in TQDM(imgToAnns.items(), desc=f"Annotations {json_file}"): |
|
img = images[f"{img_id:d}"] |
|
h, w, f = img["height"], img["width"], img["file_name"] |
|
|
|
bboxes = [] |
|
segments = [] |
|
keypoints = [] |
|
for ann in anns: |
|
if ann["iscrowd"]: |
|
continue |
|
|
|
box = np.array(ann["bbox"], dtype=np.float64) |
|
box[:2] += box[2:] / 2 |
|
box[[0, 2]] /= w |
|
box[[1, 3]] /= h |
|
if box[2] <= 0 or box[3] <= 0: |
|
continue |
|
|
|
cls = coco80[ann["category_id"] - 1] if cls91to80 else ann["category_id"] - 1 |
|
box = [cls] + box.tolist() |
|
if box not in bboxes: |
|
bboxes.append(box) |
|
if use_segments and ann.get("segmentation") is not None: |
|
if len(ann["segmentation"]) == 0: |
|
segments.append([]) |
|
continue |
|
elif len(ann["segmentation"]) > 1: |
|
s = merge_multi_segment(ann["segmentation"]) |
|
s = (np.concatenate(s, axis=0) / np.array([w, h])).reshape(-1).tolist() |
|
else: |
|
s = [j for i in ann["segmentation"] for j in i] |
|
s = (np.array(s).reshape(-1, 2) / np.array([w, h])).reshape(-1).tolist() |
|
s = [cls] + s |
|
segments.append(s) |
|
if use_keypoints and ann.get("keypoints") is not None: |
|
keypoints.append( |
|
box + (np.array(ann["keypoints"]).reshape(-1, 3) / np.array([w, h, 1])).reshape(-1).tolist() |
|
) |
|
|
|
|
|
with open((fn / f).with_suffix(".txt"), "a") as file: |
|
for i in range(len(bboxes)): |
|
if use_keypoints: |
|
line = (*(keypoints[i]),) |
|
else: |
|
line = ( |
|
*(segments[i] if use_segments and len(segments[i]) > 0 else bboxes[i]), |
|
) |
|
file.write(("%g " * len(line)).rstrip() % line + "\n") |
|
|
|
LOGGER.info(f"COCO data converted successfully.\nResults saved to {save_dir.resolve()}") |
|
|
|
|
|
def convert_dota_to_yolo_obb(dota_root_path: str): |
|
""" |
|
Converts DOTA dataset annotations to YOLO OBB (Oriented Bounding Box) format. |
|
|
|
The function processes images in the 'train' and 'val' folders of the DOTA dataset. For each image, it reads the |
|
associated label from the original labels directory and writes new labels in YOLO OBB format to a new directory. |
|
|
|
Args: |
|
dota_root_path (str): The root directory path of the DOTA dataset. |
|
|
|
Example: |
|
```python |
|
from ultralytics.data.converter import convert_dota_to_yolo_obb |
|
|
|
convert_dota_to_yolo_obb('path/to/DOTA') |
|
``` |
|
|
|
Notes: |
|
The directory structure assumed for the DOTA dataset: |
|
|
|
- DOTA |
|
ββ images |
|
β ββ train |
|
β ββ val |
|
ββ labels |
|
ββ train_original |
|
ββ val_original |
|
|
|
After execution, the function will organize the labels into: |
|
|
|
- DOTA |
|
ββ labels |
|
ββ train |
|
ββ val |
|
""" |
|
dota_root_path = Path(dota_root_path) |
|
|
|
|
|
class_mapping = { |
|
"plane": 0, |
|
"ship": 1, |
|
"storage-tank": 2, |
|
"baseball-diamond": 3, |
|
"tennis-court": 4, |
|
"basketball-court": 5, |
|
"ground-track-field": 6, |
|
"harbor": 7, |
|
"bridge": 8, |
|
"large-vehicle": 9, |
|
"small-vehicle": 10, |
|
"helicopter": 11, |
|
"roundabout": 12, |
|
"soccer-ball-field": 13, |
|
"swimming-pool": 14, |
|
"container-crane": 15, |
|
"airport": 16, |
|
"helipad": 17, |
|
} |
|
|
|
def convert_label(image_name, image_width, image_height, orig_label_dir, save_dir): |
|
"""Converts a single image's DOTA annotation to YOLO OBB format and saves it to a specified directory.""" |
|
orig_label_path = orig_label_dir / f"{image_name}.txt" |
|
save_path = save_dir / f"{image_name}.txt" |
|
|
|
with orig_label_path.open("r") as f, save_path.open("w") as g: |
|
lines = f.readlines() |
|
for line in lines: |
|
parts = line.strip().split() |
|
if len(parts) < 9: |
|
continue |
|
class_name = parts[8] |
|
class_idx = class_mapping[class_name] |
|
coords = [float(p) for p in parts[:8]] |
|
normalized_coords = [ |
|
coords[i] / image_width if i % 2 == 0 else coords[i] / image_height for i in range(8) |
|
] |
|
formatted_coords = ["{:.6g}".format(coord) for coord in normalized_coords] |
|
g.write(f"{class_idx} {' '.join(formatted_coords)}\n") |
|
|
|
for phase in ["train", "val"]: |
|
image_dir = dota_root_path / "images" / phase |
|
orig_label_dir = dota_root_path / "labels" / f"{phase}_original" |
|
save_dir = dota_root_path / "labels" / phase |
|
|
|
save_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
image_paths = list(image_dir.iterdir()) |
|
for image_path in TQDM(image_paths, desc=f"Processing {phase} images"): |
|
if image_path.suffix != ".png": |
|
continue |
|
image_name_without_ext = image_path.stem |
|
img = cv2.imread(str(image_path)) |
|
h, w = img.shape[:2] |
|
convert_label(image_name_without_ext, w, h, orig_label_dir, save_dir) |
|
|
|
|
|
def min_index(arr1, arr2): |
|
""" |
|
Find a pair of indexes with the shortest distance between two arrays of 2D points. |
|
|
|
Args: |
|
arr1 (np.ndarray): A NumPy array of shape (N, 2) representing N 2D points. |
|
arr2 (np.ndarray): A NumPy array of shape (M, 2) representing M 2D points. |
|
|
|
Returns: |
|
(tuple): A tuple containing the indexes of the points with the shortest distance in arr1 and arr2 respectively. |
|
""" |
|
dis = ((arr1[:, None, :] - arr2[None, :, :]) ** 2).sum(-1) |
|
return np.unravel_index(np.argmin(dis, axis=None), dis.shape) |
|
|
|
|
|
def merge_multi_segment(segments): |
|
""" |
|
Merge multiple segments into one list by connecting the coordinates with the minimum distance between each segment. |
|
This function connects these coordinates with a thin line to merge all segments into one. |
|
|
|
Args: |
|
segments (List[List]): Original segmentations in COCO's JSON file. |
|
Each element is a list of coordinates, like [segmentation1, segmentation2,...]. |
|
|
|
Returns: |
|
s (List[np.ndarray]): A list of connected segments represented as NumPy arrays. |
|
""" |
|
s = [] |
|
segments = [np.array(i).reshape(-1, 2) for i in segments] |
|
idx_list = [[] for _ in range(len(segments))] |
|
|
|
|
|
for i in range(1, len(segments)): |
|
idx1, idx2 = min_index(segments[i - 1], segments[i]) |
|
idx_list[i - 1].append(idx1) |
|
idx_list[i].append(idx2) |
|
|
|
|
|
for k in range(2): |
|
|
|
if k == 0: |
|
for i, idx in enumerate(idx_list): |
|
|
|
if len(idx) == 2 and idx[0] > idx[1]: |
|
idx = idx[::-1] |
|
segments[i] = segments[i][::-1, :] |
|
|
|
segments[i] = np.roll(segments[i], -idx[0], axis=0) |
|
segments[i] = np.concatenate([segments[i], segments[i][:1]]) |
|
|
|
if i in [0, len(idx_list) - 1]: |
|
s.append(segments[i]) |
|
else: |
|
idx = [0, idx[1] - idx[0]] |
|
s.append(segments[i][idx[0] : idx[1] + 1]) |
|
|
|
else: |
|
for i in range(len(idx_list) - 1, -1, -1): |
|
if i not in [0, len(idx_list) - 1]: |
|
idx = idx_list[i] |
|
nidx = abs(idx[1] - idx[0]) |
|
s.append(segments[i][nidx:]) |
|
return s |
|
|
|
|
|
def yolo_bbox2segment(im_dir, save_dir=None, sam_model="sam_b.pt"): |
|
""" |
|
Converts existing object detection dataset (bounding boxes) to segmentation dataset or oriented bounding box (OBB) |
|
in YOLO format. Generates segmentation data using SAM auto-annotator as needed. |
|
|
|
Args: |
|
im_dir (str | Path): Path to image directory to convert. |
|
save_dir (str | Path): Path to save the generated labels, labels will be saved |
|
into `labels-segment` in the same directory level of `im_dir` if save_dir is None. Default: None. |
|
sam_model (str): Segmentation model to use for intermediate segmentation data; optional. |
|
|
|
Notes: |
|
The input directory structure assumed for dataset: |
|
|
|
- im_dir |
|
ββ 001.jpg |
|
ββ .. |
|
ββ NNN.jpg |
|
- labels |
|
ββ 001.txt |
|
ββ .. |
|
ββ NNN.txt |
|
""" |
|
from ultralytics.data import YOLODataset |
|
from ultralytics.utils.ops import xywh2xyxy |
|
from ultralytics.utils import LOGGER |
|
from ultralytics import SAM |
|
from tqdm import tqdm |
|
|
|
|
|
dataset = YOLODataset(im_dir, data=dict(names=list(range(1000)))) |
|
if len(dataset.labels[0]["segments"]) > 0: |
|
LOGGER.info("Segmentation labels detected, no need to generate new ones!") |
|
return |
|
|
|
LOGGER.info("Detection labels detected, generating segment labels by SAM model!") |
|
sam_model = SAM(sam_model) |
|
for l in tqdm(dataset.labels, total=len(dataset.labels), desc="Generating segment labels"): |
|
h, w = l["shape"] |
|
boxes = l["bboxes"] |
|
if len(boxes) == 0: |
|
continue |
|
boxes[:, [0, 2]] *= w |
|
boxes[:, [1, 3]] *= h |
|
im = cv2.imread(l["im_file"]) |
|
sam_results = sam_model(im, bboxes=xywh2xyxy(boxes), verbose=False, save=False) |
|
l["segments"] = sam_results[0].masks.xyn |
|
|
|
save_dir = Path(save_dir) if save_dir else Path(im_dir).parent / "labels-segment" |
|
save_dir.mkdir(parents=True, exist_ok=True) |
|
for l in dataset.labels: |
|
texts = [] |
|
lb_name = Path(l["im_file"]).with_suffix(".txt").name |
|
txt_file = save_dir / lb_name |
|
cls = l["cls"] |
|
for i, s in enumerate(l["segments"]): |
|
line = (int(cls[i]), *s.reshape(-1)) |
|
texts.append(("%g " * len(line)).rstrip() % line) |
|
if texts: |
|
with open(txt_file, "a") as f: |
|
f.writelines(text + "\n" for text in texts) |
|
LOGGER.info(f"Generated segment labels saved in {save_dir}") |
|
|