|
|
|
import contextlib |
|
from itertools import repeat |
|
from multiprocessing.pool import ThreadPool |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torchvision |
|
from PIL import Image |
|
|
|
from ultralytics.utils import LOCAL_RANK, NUM_THREADS, TQDM, colorstr, is_dir_writeable |
|
from ultralytics.utils.ops import resample_segments |
|
from .augment import Compose, Format, Instances, LetterBox, classify_augmentations, classify_transforms, v8_transforms |
|
from .base import BaseDataset |
|
from .utils import HELP_URL, LOGGER, get_hash, img2label_paths, verify_image, verify_image_label |
|
|
|
|
|
DATASET_CACHE_VERSION = "1.0.3" |
|
|
|
|
|
class YOLODataset(BaseDataset): |
|
""" |
|
Dataset class for loading object detection and/or segmentation labels in YOLO format. |
|
|
|
Args: |
|
data (dict, optional): A dataset YAML dictionary. Defaults to None. |
|
task (str): An explicit arg to point current task, Defaults to 'detect'. |
|
|
|
Returns: |
|
(torch.utils.data.Dataset): A PyTorch dataset object that can be used for training an object detection model. |
|
""" |
|
|
|
def __init__(self, *args, data=None, task="detect", **kwargs): |
|
"""Initializes the YOLODataset with optional configurations for segments and keypoints.""" |
|
self.use_segments = task == "segment" |
|
self.use_keypoints = task == "pose" |
|
self.use_obb = task == "obb" |
|
self.data = data |
|
assert not (self.use_segments and self.use_keypoints), "Can not use both segments and keypoints." |
|
super().__init__(*args, **kwargs) |
|
|
|
def cache_labels(self, path=Path("./labels.cache")): |
|
""" |
|
Cache dataset labels, check images and read shapes. |
|
|
|
Args: |
|
path (Path): Path where to save the cache file. Default is Path('./labels.cache'). |
|
|
|
Returns: |
|
(dict): labels. |
|
""" |
|
x = {"labels": []} |
|
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] |
|
desc = f"{self.prefix}Scanning {path.parent / path.stem}..." |
|
total = len(self.im_files) |
|
nkpt, ndim = self.data.get("kpt_shape", (0, 0)) |
|
if self.use_keypoints and (nkpt <= 0 or ndim not in (2, 3)): |
|
raise ValueError( |
|
"'kpt_shape' in data.yaml missing or incorrect. Should be a list with [number of " |
|
"keypoints, number of dims (2 for x,y or 3 for x,y,visible)], i.e. 'kpt_shape: [17, 3]'" |
|
) |
|
with ThreadPool(NUM_THREADS) as pool: |
|
results = pool.imap( |
|
func=verify_image_label, |
|
iterable=zip( |
|
self.im_files, |
|
self.label_files, |
|
repeat(self.prefix), |
|
repeat(self.use_keypoints), |
|
repeat(len(self.data["names"])), |
|
repeat(nkpt), |
|
repeat(ndim), |
|
), |
|
) |
|
pbar = TQDM(results, desc=desc, total=total) |
|
for im_file, lb, shape, segments, keypoint, nm_f, nf_f, ne_f, nc_f, msg in pbar: |
|
nm += nm_f |
|
nf += nf_f |
|
ne += ne_f |
|
nc += nc_f |
|
if im_file: |
|
x["labels"].append( |
|
dict( |
|
im_file=im_file, |
|
shape=shape, |
|
cls=lb[:, 0:1], |
|
bboxes=lb[:, 1:], |
|
segments=segments, |
|
keypoints=keypoint, |
|
normalized=True, |
|
bbox_format="xywh", |
|
) |
|
) |
|
if msg: |
|
msgs.append(msg) |
|
pbar.desc = f"{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt" |
|
pbar.close() |
|
|
|
if msgs: |
|
LOGGER.info("\n".join(msgs)) |
|
if nf == 0: |
|
LOGGER.warning(f"{self.prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}") |
|
x["hash"] = get_hash(self.label_files + self.im_files) |
|
x["results"] = nf, nm, ne, nc, len(self.im_files) |
|
x["msgs"] = msgs |
|
save_dataset_cache_file(self.prefix, path, x) |
|
return x |
|
|
|
def get_labels(self): |
|
"""Returns dictionary of labels for YOLO training.""" |
|
self.label_files = img2label_paths(self.im_files) |
|
cache_path = Path(self.label_files[0]).parent.with_suffix(".cache") |
|
try: |
|
cache, exists = load_dataset_cache_file(cache_path), True |
|
assert cache["version"] == DATASET_CACHE_VERSION |
|
assert cache["hash"] == get_hash(self.label_files + self.im_files) |
|
except (FileNotFoundError, AssertionError, AttributeError): |
|
cache, exists = self.cache_labels(cache_path), False |
|
|
|
|
|
nf, nm, ne, nc, n = cache.pop("results") |
|
if exists and LOCAL_RANK in (-1, 0): |
|
d = f"Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt" |
|
TQDM(None, desc=self.prefix + d, total=n, initial=n) |
|
if cache["msgs"]: |
|
LOGGER.info("\n".join(cache["msgs"])) |
|
|
|
|
|
[cache.pop(k) for k in ("hash", "version", "msgs")] |
|
labels = cache["labels"] |
|
if not labels: |
|
LOGGER.warning(f"WARNING ⚠️ No images found in {cache_path}, training may not work correctly. {HELP_URL}") |
|
self.im_files = [lb["im_file"] for lb in labels] |
|
|
|
|
|
lengths = ((len(lb["cls"]), len(lb["bboxes"]), len(lb["segments"])) for lb in labels) |
|
len_cls, len_boxes, len_segments = (sum(x) for x in zip(*lengths)) |
|
if len_segments and len_boxes != len_segments: |
|
LOGGER.warning( |
|
f"WARNING ⚠️ Box and segment counts should be equal, but got len(segments) = {len_segments}, " |
|
f"len(boxes) = {len_boxes}. To resolve this only boxes will be used and all segments will be removed. " |
|
"To avoid this please supply either a detect or segment dataset, not a detect-segment mixed dataset." |
|
) |
|
for lb in labels: |
|
lb["segments"] = [] |
|
if len_cls == 0: |
|
LOGGER.warning(f"WARNING ⚠️ No labels found in {cache_path}, training may not work correctly. {HELP_URL}") |
|
return labels |
|
|
|
def build_transforms(self, hyp=None): |
|
"""Builds and appends transforms to the list.""" |
|
if self.augment: |
|
hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0 |
|
hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0 |
|
transforms = v8_transforms(self, self.imgsz, hyp) |
|
else: |
|
transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), scaleup=False)]) |
|
transforms.append( |
|
Format( |
|
bbox_format="xywh", |
|
normalize=True, |
|
return_mask=self.use_segments, |
|
return_keypoint=self.use_keypoints, |
|
return_obb=self.use_obb, |
|
batch_idx=True, |
|
mask_ratio=hyp.mask_ratio, |
|
mask_overlap=hyp.overlap_mask, |
|
bgr=hyp.bgr if self.augment else 0.0, |
|
) |
|
) |
|
return transforms |
|
|
|
def close_mosaic(self, hyp): |
|
"""Sets mosaic, copy_paste and mixup options to 0.0 and builds transformations.""" |
|
hyp.mosaic = 0.0 |
|
hyp.copy_paste = 0.0 |
|
hyp.mixup = 0.0 |
|
self.transforms = self.build_transforms(hyp) |
|
|
|
def update_labels_info(self, label): |
|
""" |
|
Custom your label format here. |
|
|
|
Note: |
|
cls is not with bboxes now, classification and semantic segmentation need an independent cls label |
|
Can also support classification and semantic segmentation by adding or removing dict keys there. |
|
""" |
|
bboxes = label.pop("bboxes") |
|
segments = label.pop("segments", []) |
|
keypoints = label.pop("keypoints", None) |
|
bbox_format = label.pop("bbox_format") |
|
normalized = label.pop("normalized") |
|
|
|
|
|
segment_resamples = 100 if self.use_obb else 1000 |
|
if len(segments) > 0: |
|
|
|
|
|
segments = np.stack(resample_segments(segments, n=segment_resamples), axis=0) |
|
else: |
|
segments = np.zeros((0, segment_resamples, 2), dtype=np.float32) |
|
label["instances"] = Instances(bboxes, segments, keypoints, bbox_format=bbox_format, normalized=normalized) |
|
return label |
|
|
|
@staticmethod |
|
def collate_fn(batch): |
|
"""Collates data samples into batches.""" |
|
new_batch = {} |
|
keys = batch[0].keys() |
|
values = list(zip(*[list(b.values()) for b in batch])) |
|
for i, k in enumerate(keys): |
|
value = values[i] |
|
if k == "img": |
|
value = torch.stack(value, 0) |
|
if k in ["masks", "keypoints", "bboxes", "cls", "segments", "obb"]: |
|
value = torch.cat(value, 0) |
|
new_batch[k] = value |
|
new_batch["batch_idx"] = list(new_batch["batch_idx"]) |
|
for i in range(len(new_batch["batch_idx"])): |
|
new_batch["batch_idx"][i] += i |
|
new_batch["batch_idx"] = torch.cat(new_batch["batch_idx"], 0) |
|
return new_batch |
|
|
|
|
|
|
|
class ClassificationDataset(torchvision.datasets.ImageFolder): |
|
""" |
|
Extends torchvision ImageFolder to support YOLO classification tasks, offering functionalities like image |
|
augmentation, caching, and verification. It's designed to efficiently handle large datasets for training deep |
|
learning models, with optional image transformations and caching mechanisms to speed up training. |
|
|
|
This class allows for augmentations using both torchvision and Albumentations libraries, and supports caching images |
|
in RAM or on disk to reduce IO overhead during training. Additionally, it implements a robust verification process |
|
to ensure data integrity and consistency. |
|
|
|
Attributes: |
|
cache_ram (bool): Indicates if caching in RAM is enabled. |
|
cache_disk (bool): Indicates if caching on disk is enabled. |
|
samples (list): A list of tuples, each containing the path to an image, its class index, path to its .npy cache |
|
file (if caching on disk), and optionally the loaded image array (if caching in RAM). |
|
torch_transforms (callable): PyTorch transforms to be applied to the images. |
|
""" |
|
|
|
def __init__(self, root, args, augment=False, prefix=""): |
|
""" |
|
Initialize YOLO object with root, image size, augmentations, and cache settings. |
|
|
|
Args: |
|
root (str): Path to the dataset directory where images are stored in a class-specific folder structure. |
|
args (Namespace): Configuration containing dataset-related settings such as image size, augmentation |
|
parameters, and cache settings. It includes attributes like `imgsz` (image size), `fraction` (fraction |
|
of data to use), `scale`, `fliplr`, `flipud`, `cache` (disk or RAM caching for faster training), |
|
`auto_augment`, `hsv_h`, `hsv_s`, `hsv_v`, and `crop_fraction`. |
|
augment (bool, optional): Whether to apply augmentations to the dataset. Default is False. |
|
prefix (str, optional): Prefix for logging and cache filenames, aiding in dataset identification and |
|
debugging. Default is an empty string. |
|
""" |
|
super().__init__(root=root) |
|
if augment and args.fraction < 1.0: |
|
self.samples = self.samples[: round(len(self.samples) * args.fraction)] |
|
self.prefix = colorstr(f"{prefix}: ") if prefix else "" |
|
self.cache_ram = args.cache is True or args.cache == "ram" |
|
self.cache_disk = args.cache == "disk" |
|
self.samples = self.verify_images() |
|
self.samples = [list(x) + [Path(x[0]).with_suffix(".npy"), None] for x in self.samples] |
|
scale = (1.0 - args.scale, 1.0) |
|
self.torch_transforms = ( |
|
classify_augmentations( |
|
size=args.imgsz, |
|
scale=scale, |
|
hflip=args.fliplr, |
|
vflip=args.flipud, |
|
erasing=args.erasing, |
|
auto_augment=args.auto_augment, |
|
hsv_h=args.hsv_h, |
|
hsv_s=args.hsv_s, |
|
hsv_v=args.hsv_v, |
|
) |
|
if augment |
|
else classify_transforms(size=args.imgsz, crop_fraction=args.crop_fraction) |
|
) |
|
|
|
def __getitem__(self, i): |
|
"""Returns subset of data and targets corresponding to given indices.""" |
|
f, j, fn, im = self.samples[i] |
|
if self.cache_ram and im is None: |
|
im = self.samples[i][3] = cv2.imread(f) |
|
elif self.cache_disk: |
|
if not fn.exists(): |
|
np.save(fn.as_posix(), cv2.imread(f), allow_pickle=False) |
|
im = np.load(fn) |
|
else: |
|
im = cv2.imread(f) |
|
|
|
im = Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB)) |
|
sample = self.torch_transforms(im) |
|
return {"img": sample, "cls": j} |
|
|
|
def __len__(self) -> int: |
|
"""Return the total number of samples in the dataset.""" |
|
return len(self.samples) |
|
|
|
def verify_images(self): |
|
"""Verify all images in dataset.""" |
|
desc = f"{self.prefix}Scanning {self.root}..." |
|
path = Path(self.root).with_suffix(".cache") |
|
|
|
with contextlib.suppress(FileNotFoundError, AssertionError, AttributeError): |
|
cache = load_dataset_cache_file(path) |
|
assert cache["version"] == DATASET_CACHE_VERSION |
|
assert cache["hash"] == get_hash([x[0] for x in self.samples]) |
|
nf, nc, n, samples = cache.pop("results") |
|
if LOCAL_RANK in (-1, 0): |
|
d = f"{desc} {nf} images, {nc} corrupt" |
|
TQDM(None, desc=d, total=n, initial=n) |
|
if cache["msgs"]: |
|
LOGGER.info("\n".join(cache["msgs"])) |
|
return samples |
|
|
|
|
|
nf, nc, msgs, samples, x = 0, 0, [], [], {} |
|
with ThreadPool(NUM_THREADS) as pool: |
|
results = pool.imap(func=verify_image, iterable=zip(self.samples, repeat(self.prefix))) |
|
pbar = TQDM(results, desc=desc, total=len(self.samples)) |
|
for sample, nf_f, nc_f, msg in pbar: |
|
if nf_f: |
|
samples.append(sample) |
|
if msg: |
|
msgs.append(msg) |
|
nf += nf_f |
|
nc += nc_f |
|
pbar.desc = f"{desc} {nf} images, {nc} corrupt" |
|
pbar.close() |
|
if msgs: |
|
LOGGER.info("\n".join(msgs)) |
|
x["hash"] = get_hash([x[0] for x in self.samples]) |
|
x["results"] = nf, nc, len(samples), samples |
|
x["msgs"] = msgs |
|
save_dataset_cache_file(self.prefix, path, x) |
|
return samples |
|
|
|
|
|
def load_dataset_cache_file(path): |
|
"""Load an Ultralytics *.cache dictionary from path.""" |
|
import gc |
|
|
|
gc.disable() |
|
cache = np.load(str(path), allow_pickle=True).item() |
|
gc.enable() |
|
return cache |
|
|
|
|
|
def save_dataset_cache_file(prefix, path, x): |
|
"""Save an Ultralytics dataset *.cache dictionary x to path.""" |
|
x["version"] = DATASET_CACHE_VERSION |
|
if is_dir_writeable(path.parent): |
|
if path.exists(): |
|
path.unlink() |
|
np.save(str(path), x) |
|
path.with_suffix(".cache.npy").rename(path) |
|
LOGGER.info(f"{prefix}New cache created: {path}") |
|
else: |
|
LOGGER.warning(f"{prefix}WARNING ⚠️ Cache directory {path.parent} is not writeable, cache not saved.") |
|
|
|
|
|
|
|
class SemanticDataset(BaseDataset): |
|
""" |
|
Semantic Segmentation Dataset. |
|
|
|
This class is responsible for handling datasets used for semantic segmentation tasks. It inherits functionalities |
|
from the BaseDataset class. |
|
|
|
Note: |
|
This class is currently a placeholder and needs to be populated with methods and attributes for supporting |
|
semantic segmentation tasks. |
|
""" |
|
|
|
def __init__(self): |
|
"""Initialize a SemanticDataset object.""" |
|
super().__init__() |
|
|