YOLOv10 / ultralytics /data /loaders.py
Ean Yang
εˆε§‹εŒ–ιƒ¨η½²
69a5bd9
# Ultralytics YOLO πŸš€, AGPL-3.0 license
import glob
import math
import os
import time
from dataclasses import dataclass
from pathlib import Path
from threading import Thread
from urllib.parse import urlparse
import cv2
import numpy as np
import requests
import torch
from PIL import Image
from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS
from ultralytics.utils import LOGGER, is_colab, is_kaggle, ops
from ultralytics.utils.checks import check_requirements
@dataclass
class SourceTypes:
"""Class to represent various types of input sources for predictions."""
stream: bool = False
screenshot: bool = False
from_img: bool = False
tensor: bool = False
class LoadStreams:
"""
Stream Loader for various types of video streams, Supports RTSP, RTMP, HTTP, and TCP streams.
Attributes:
sources (str): The source input paths or URLs for the video streams.
vid_stride (int): Video frame-rate stride, defaults to 1.
buffer (bool): Whether to buffer input streams, defaults to False.
running (bool): Flag to indicate if the streaming thread is running.
mode (str): Set to 'stream' indicating real-time capture.
imgs (list): List of image frames for each stream.
fps (list): List of FPS for each stream.
frames (list): List of total frames for each stream.
threads (list): List of threads for each stream.
shape (list): List of shapes for each stream.
caps (list): List of cv2.VideoCapture objects for each stream.
bs (int): Batch size for processing.
Methods:
__init__: Initialize the stream loader.
update: Read stream frames in daemon thread.
close: Close stream loader and release resources.
__iter__: Returns an iterator object for the class.
__next__: Returns source paths, transformed, and original images for processing.
__len__: Return the length of the sources object.
Example:
```bash
yolo predict source='rtsp://example.com/media.mp4'
```
"""
def __init__(self, sources="file.streams", vid_stride=1, buffer=False):
"""Initialize instance variables and check for consistent input stream shapes."""
torch.backends.cudnn.benchmark = True # faster for fixed-size inference
self.buffer = buffer # buffer input streams
self.running = True # running flag for Thread
self.mode = "stream"
self.vid_stride = vid_stride # video frame-rate stride
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
n = len(sources)
self.bs = n
self.fps = [0] * n # frames per second
self.frames = [0] * n
self.threads = [None] * n
self.caps = [None] * n # video capture objects
self.imgs = [[] for _ in range(n)] # images
self.shape = [[] for _ in range(n)] # image shapes
self.sources = [ops.clean_str(x) for x in sources] # clean source names for later
for i, s in enumerate(sources): # index, source
# Start thread to read frames from video stream
st = f"{i + 1}/{n}: {s}... "
if urlparse(s).hostname in ("www.youtube.com", "youtube.com", "youtu.be"): # if source is YouTube video
# YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/LNwODJXcvt4'
s = get_best_youtube_url(s)
s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
if s == 0 and (is_colab() or is_kaggle()):
raise NotImplementedError(
"'source=0' webcam not supported in Colab and Kaggle notebooks. "
"Try running 'source=0' in a local environment."
)
self.caps[i] = cv2.VideoCapture(s) # store video capture object
if not self.caps[i].isOpened():
raise ConnectionError(f"{st}Failed to open {s}")
w = int(self.caps[i].get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(self.caps[i].get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = self.caps[i].get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan
self.frames[i] = max(int(self.caps[i].get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float(
"inf"
) # infinite stream fallback
self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback
success, im = self.caps[i].read() # guarantee first frame
if not success or im is None:
raise ConnectionError(f"{st}Failed to read images from {s}")
self.imgs[i].append(im)
self.shape[i] = im.shape
self.threads[i] = Thread(target=self.update, args=([i, self.caps[i], s]), daemon=True)
LOGGER.info(f"{st}Success βœ… ({self.frames[i]} frames of shape {w}x{h} at {self.fps[i]:.2f} FPS)")
self.threads[i].start()
LOGGER.info("") # newline
def update(self, i, cap, stream):
"""Read stream `i` frames in daemon thread."""
n, f = 0, self.frames[i] # frame number, frame array
while self.running and cap.isOpened() and n < (f - 1):
if len(self.imgs[i]) < 30: # keep a <=30-image buffer
n += 1
cap.grab() # .read() = .grab() followed by .retrieve()
if n % self.vid_stride == 0:
success, im = cap.retrieve()
if not success:
im = np.zeros(self.shape[i], dtype=np.uint8)
LOGGER.warning("WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.")
cap.open(stream) # re-open stream if signal was lost
if self.buffer:
self.imgs[i].append(im)
else:
self.imgs[i] = [im]
else:
time.sleep(0.01) # wait until the buffer is empty
def close(self):
"""Close stream loader and release resources."""
self.running = False # stop flag for Thread
for thread in self.threads:
if thread.is_alive():
thread.join(timeout=5) # Add timeout
for cap in self.caps: # Iterate through the stored VideoCapture objects
try:
cap.release() # release video capture
except Exception as e:
LOGGER.warning(f"WARNING ⚠️ Could not release VideoCapture object: {e}")
cv2.destroyAllWindows()
def __iter__(self):
"""Iterates through YOLO image feed and re-opens unresponsive streams."""
self.count = -1
return self
def __next__(self):
"""Returns source paths, transformed and original images for processing."""
self.count += 1
images = []
for i, x in enumerate(self.imgs):
# Wait until a frame is available in each buffer
while not x:
if not self.threads[i].is_alive() or cv2.waitKey(1) == ord("q"): # q to quit
self.close()
raise StopIteration
time.sleep(1 / min(self.fps))
x = self.imgs[i]
if not x:
LOGGER.warning(f"WARNING ⚠️ Waiting for stream {i}")
# Get and remove the first frame from imgs buffer
if self.buffer:
images.append(x.pop(0))
# Get the last frame, and clear the rest from the imgs buffer
else:
images.append(x.pop(-1) if x else np.zeros(self.shape[i], dtype=np.uint8))
x.clear()
return self.sources, images, [""] * self.bs
def __len__(self):
"""Return the length of the sources object."""
return self.bs # 1E12 frames = 32 streams at 30 FPS for 30 years
class LoadScreenshots:
"""
YOLOv8 screenshot dataloader.
This class manages the loading of screenshot images for processing with YOLOv8.
Suitable for use with `yolo predict source=screen`.
Attributes:
source (str): The source input indicating which screen to capture.
screen (int): The screen number to capture.
left (int): The left coordinate for screen capture area.
top (int): The top coordinate for screen capture area.
width (int): The width of the screen capture area.
height (int): The height of the screen capture area.
mode (str): Set to 'stream' indicating real-time capture.
frame (int): Counter for captured frames.
sct (mss.mss): Screen capture object from `mss` library.
bs (int): Batch size, set to 1.
monitor (dict): Monitor configuration details.
Methods:
__iter__: Returns an iterator object.
__next__: Captures the next screenshot and returns it.
"""
def __init__(self, source):
"""Source = [screen_number left top width height] (pixels)."""
check_requirements("mss")
import mss # noqa
source, *params = source.split()
self.screen, left, top, width, height = 0, None, None, None, None # default to full screen 0
if len(params) == 1:
self.screen = int(params[0])
elif len(params) == 4:
left, top, width, height = (int(x) for x in params)
elif len(params) == 5:
self.screen, left, top, width, height = (int(x) for x in params)
self.mode = "stream"
self.frame = 0
self.sct = mss.mss()
self.bs = 1
self.fps = 30
# Parse monitor shape
monitor = self.sct.monitors[self.screen]
self.top = monitor["top"] if top is None else (monitor["top"] + top)
self.left = monitor["left"] if left is None else (monitor["left"] + left)
self.width = width or monitor["width"]
self.height = height or monitor["height"]
self.monitor = {"left": self.left, "top": self.top, "width": self.width, "height": self.height}
def __iter__(self):
"""Returns an iterator of the object."""
return self
def __next__(self):
"""mss screen capture: get raw pixels from the screen as np array."""
im0 = np.asarray(self.sct.grab(self.monitor))[:, :, :3] # BGRA to BGR
s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: "
self.frame += 1
return [str(self.screen)], [im0], [s] # screen, img, string
class LoadImagesAndVideos:
"""
YOLOv8 image/video dataloader.
This class manages the loading and pre-processing of image and video data for YOLOv8. It supports loading from
various formats, including single image files, video files, and lists of image and video paths.
Attributes:
files (list): List of image and video file paths.
nf (int): Total number of files (images and videos).
video_flag (list): Flags indicating whether a file is a video (True) or an image (False).
mode (str): Current mode, 'image' or 'video'.
vid_stride (int): Stride for video frame-rate, defaults to 1.
bs (int): Batch size, set to 1 for this class.
cap (cv2.VideoCapture): Video capture object for OpenCV.
frame (int): Frame counter for video.
frames (int): Total number of frames in the video.
count (int): Counter for iteration, initialized at 0 during `__iter__()`.
Methods:
_new_video(path): Create a new cv2.VideoCapture object for a given video path.
"""
def __init__(self, path, batch=1, vid_stride=1):
"""Initialize the Dataloader and raise FileNotFoundError if file not found."""
parent = None
if isinstance(path, str) and Path(path).suffix == ".txt": # *.txt file with img/vid/dir on each line
parent = Path(path).parent
path = Path(path).read_text().splitlines() # list of sources
files = []
for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
a = str(Path(p).absolute()) # do not use .resolve() https://github.com/ultralytics/ultralytics/issues/2912
if "*" in a:
files.extend(sorted(glob.glob(a, recursive=True))) # glob
elif os.path.isdir(a):
files.extend(sorted(glob.glob(os.path.join(a, "*.*")))) # dir
elif os.path.isfile(a):
files.append(a) # files (absolute or relative to CWD)
elif parent and (parent / p).is_file():
files.append(str((parent / p).absolute())) # files (relative to *.txt file parent)
else:
raise FileNotFoundError(f"{p} does not exist")
images = [x for x in files if x.split(".")[-1].lower() in IMG_FORMATS]
videos = [x for x in files if x.split(".")[-1].lower() in VID_FORMATS]
ni, nv = len(images), len(videos)
self.files = images + videos
self.nf = ni + nv # number of files
self.ni = ni # number of images
self.video_flag = [False] * ni + [True] * nv
self.mode = "image"
self.vid_stride = vid_stride # video frame-rate stride
self.bs = batch
if any(videos):
self._new_video(videos[0]) # new video
else:
self.cap = None
if self.nf == 0:
raise FileNotFoundError(
f"No images or videos found in {p}. "
f"Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}"
)
def __iter__(self):
"""Returns an iterator object for VideoStream or ImageFolder."""
self.count = 0
return self
def __next__(self):
"""Returns the next batch of images or video frames along with their paths and metadata."""
paths, imgs, info = [], [], []
while len(imgs) < self.bs:
if self.count >= self.nf: # end of file list
if len(imgs) > 0:
return paths, imgs, info # return last partial batch
else:
raise StopIteration
path = self.files[self.count]
if self.video_flag[self.count]:
self.mode = "video"
if not self.cap or not self.cap.isOpened():
self._new_video(path)
for _ in range(self.vid_stride):
success = self.cap.grab()
if not success:
break # end of video or failure
if success:
success, im0 = self.cap.retrieve()
if success:
self.frame += 1
paths.append(path)
imgs.append(im0)
info.append(f"video {self.count + 1}/{self.nf} (frame {self.frame}/{self.frames}) {path}: ")
if self.frame == self.frames: # end of video
self.count += 1
self.cap.release()
else:
# Move to the next file if the current video ended or failed to open
self.count += 1
if self.cap:
self.cap.release()
if self.count < self.nf:
self._new_video(self.files[self.count])
else:
self.mode = "image"
im0 = cv2.imread(path) # BGR
if im0 is None:
raise FileNotFoundError(f"Image Not Found {path}")
paths.append(path)
imgs.append(im0)
info.append(f"image {self.count + 1}/{self.nf} {path}: ")
self.count += 1 # move to the next file
if self.count >= self.ni: # end of image list
break
return paths, imgs, info
def _new_video(self, path):
"""Creates a new video capture object for the given path."""
self.frame = 0
self.cap = cv2.VideoCapture(path)
self.fps = int(self.cap.get(cv2.CAP_PROP_FPS))
if not self.cap.isOpened():
raise FileNotFoundError(f"Failed to open video {path}")
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
def __len__(self):
"""Returns the number of batches in the object."""
return math.ceil(self.nf / self.bs) # number of files
class LoadPilAndNumpy:
"""
Load images from PIL and Numpy arrays for batch processing.
This class is designed to manage loading and pre-processing of image data from both PIL and Numpy formats.
It performs basic validation and format conversion to ensure that the images are in the required format for
downstream processing.
Attributes:
paths (list): List of image paths or autogenerated filenames.
im0 (list): List of images stored as Numpy arrays.
mode (str): Type of data being processed, defaults to 'image'.
bs (int): Batch size, equivalent to the length of `im0`.
Methods:
_single_check(im): Validate and format a single image to a Numpy array.
"""
def __init__(self, im0):
"""Initialize PIL and Numpy Dataloader."""
if not isinstance(im0, list):
im0 = [im0]
self.paths = [getattr(im, "filename", f"image{i}.jpg") for i, im in enumerate(im0)]
self.im0 = [self._single_check(im) for im in im0]
self.mode = "image"
self.bs = len(self.im0)
@staticmethod
def _single_check(im):
"""Validate and format an image to numpy array."""
assert isinstance(im, (Image.Image, np.ndarray)), f"Expected PIL/np.ndarray image type, but got {type(im)}"
if isinstance(im, Image.Image):
if im.mode != "RGB":
im = im.convert("RGB")
im = np.asarray(im)[:, :, ::-1]
im = np.ascontiguousarray(im) # contiguous
return im
def __len__(self):
"""Returns the length of the 'im0' attribute."""
return len(self.im0)
def __next__(self):
"""Returns batch paths, images, processed images, None, ''."""
if self.count == 1: # loop only once as it's batch inference
raise StopIteration
self.count += 1
return self.paths, self.im0, [""] * self.bs
def __iter__(self):
"""Enables iteration for class LoadPilAndNumpy."""
self.count = 0
return self
class LoadTensor:
"""
Load images from torch.Tensor data.
This class manages the loading and pre-processing of image data from PyTorch tensors for further processing.
Attributes:
im0 (torch.Tensor): The input tensor containing the image(s).
bs (int): Batch size, inferred from the shape of `im0`.
mode (str): Current mode, set to 'image'.
paths (list): List of image paths or filenames.
count (int): Counter for iteration, initialized at 0 during `__iter__()`.
Methods:
_single_check(im, stride): Validate and possibly modify the input tensor.
"""
def __init__(self, im0) -> None:
"""Initialize Tensor Dataloader."""
self.im0 = self._single_check(im0)
self.bs = self.im0.shape[0]
self.mode = "image"
self.paths = [getattr(im, "filename", f"image{i}.jpg") for i, im in enumerate(im0)]
@staticmethod
def _single_check(im, stride=32):
"""Validate and format an image to torch.Tensor."""
s = (
f"WARNING ⚠️ torch.Tensor inputs should be BCHW i.e. shape(1, 3, 640, 640) "
f"divisible by stride {stride}. Input shape{tuple(im.shape)} is incompatible."
)
if len(im.shape) != 4:
if len(im.shape) != 3:
raise ValueError(s)
LOGGER.warning(s)
im = im.unsqueeze(0)
if im.shape[2] % stride or im.shape[3] % stride:
raise ValueError(s)
if im.max() > 1.0 + torch.finfo(im.dtype).eps: # torch.float32 eps is 1.2e-07
LOGGER.warning(
f"WARNING ⚠️ torch.Tensor inputs should be normalized 0.0-1.0 but max value is {im.max()}. "
f"Dividing input by 255."
)
im = im.float() / 255.0
return im
def __iter__(self):
"""Returns an iterator object."""
self.count = 0
return self
def __next__(self):
"""Return next item in the iterator."""
if self.count == 1:
raise StopIteration
self.count += 1
return self.paths, self.im0, [""] * self.bs
def __len__(self):
"""Returns the batch size."""
return self.bs
def autocast_list(source):
"""Merges a list of source of different types into a list of numpy arrays or PIL images."""
files = []
for im in source:
if isinstance(im, (str, Path)): # filename or uri
files.append(Image.open(requests.get(im, stream=True).raw if str(im).startswith("http") else im))
elif isinstance(im, (Image.Image, np.ndarray)): # PIL or np Image
files.append(im)
else:
raise TypeError(
f"type {type(im).__name__} is not a supported Ultralytics prediction source type. \n"
f"See https://docs.ultralytics.com/modes/predict for supported source types."
)
return files
def get_best_youtube_url(url, use_pafy=True):
"""
Retrieves the URL of the best quality MP4 video stream from a given YouTube video.
This function uses the pafy or yt_dlp library to extract the video info from YouTube. It then finds the highest
quality MP4 format that has video codec but no audio codec, and returns the URL of this video stream.
Args:
url (str): The URL of the YouTube video.
use_pafy (bool): Use the pafy package, default=True, otherwise use yt_dlp package.
Returns:
(str): The URL of the best quality MP4 video stream, or None if no suitable stream is found.
"""
if use_pafy:
check_requirements(("pafy", "youtube_dl==2020.12.2"))
import pafy # noqa
return pafy.new(url).getbestvideo(preftype="mp4").url
else:
check_requirements("yt-dlp")
import yt_dlp
with yt_dlp.YoutubeDL({"quiet": True}) as ydl:
info_dict = ydl.extract_info(url, download=False) # extract info
for f in reversed(info_dict.get("formats", [])): # reversed because best is usually last
# Find a format with video codec, no audio, *.mp4 extension at least 1920x1080 size
good_size = (f.get("width") or 0) >= 1920 or (f.get("height") or 0) >= 1080
if good_size and f["vcodec"] != "none" and f["acodec"] == "none" and f["ext"] == "mp4":
return f.get("url")
# Define constants
LOADERS = (LoadStreams, LoadPilAndNumpy, LoadImagesAndVideos, LoadScreenshots)