|
|
|
|
|
from collections import defaultdict |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
from ultralytics.utils.checks import check_imshow, check_requirements |
|
from ultralytics.utils.plotting import Annotator |
|
|
|
check_requirements("shapely>=2.0.0") |
|
|
|
from shapely.geometry import LineString, Point, Polygon |
|
|
|
|
|
class Heatmap: |
|
"""A class to draw heatmaps in real-time video stream based on their tracks.""" |
|
|
|
def __init__(self): |
|
"""Initializes the heatmap class with default values for Visual, Image, track, count and heatmap parameters.""" |
|
|
|
|
|
self.annotator = None |
|
self.view_img = False |
|
self.shape = "circle" |
|
|
|
|
|
self.imw = None |
|
self.imh = None |
|
self.im0 = None |
|
self.view_in_counts = True |
|
self.view_out_counts = True |
|
|
|
|
|
self.colormap = None |
|
self.heatmap = None |
|
self.heatmap_alpha = 0.5 |
|
|
|
|
|
self.boxes = None |
|
self.track_ids = None |
|
self.clss = None |
|
self.track_history = defaultdict(list) |
|
|
|
|
|
self.count_reg_pts = None |
|
self.counting_region = None |
|
self.line_dist_thresh = 15 |
|
self.region_thickness = 5 |
|
self.region_color = (255, 0, 255) |
|
|
|
|
|
self.in_counts = 0 |
|
self.out_counts = 0 |
|
self.counting_list = [] |
|
self.count_txt_thickness = 0 |
|
self.count_txt_color = (0, 0, 0) |
|
self.count_color = (255, 255, 255) |
|
|
|
|
|
self.decay_factor = 0.99 |
|
|
|
|
|
self.env_check = check_imshow(warn=True) |
|
|
|
def set_args( |
|
self, |
|
imw, |
|
imh, |
|
colormap=cv2.COLORMAP_JET, |
|
heatmap_alpha=0.5, |
|
view_img=False, |
|
view_in_counts=True, |
|
view_out_counts=True, |
|
count_reg_pts=None, |
|
count_txt_thickness=2, |
|
count_txt_color=(0, 0, 0), |
|
count_color=(255, 255, 255), |
|
count_reg_color=(255, 0, 255), |
|
region_thickness=5, |
|
line_dist_thresh=15, |
|
decay_factor=0.99, |
|
shape="circle", |
|
): |
|
""" |
|
Configures the heatmap colormap, width, height and display parameters. |
|
|
|
Args: |
|
colormap (cv2.COLORMAP): The colormap to be set. |
|
imw (int): The width of the frame. |
|
imh (int): The height of the frame. |
|
heatmap_alpha (float): alpha value for heatmap display |
|
view_img (bool): Flag indicating frame display |
|
view_in_counts (bool): Flag to control whether to display the incounts on video stream. |
|
view_out_counts (bool): Flag to control whether to display the outcounts on video stream. |
|
count_reg_pts (list): Object counting region points |
|
count_txt_thickness (int): Text thickness for object counting display |
|
count_txt_color (RGB color): count text color value |
|
count_color (RGB color): count text background color value |
|
count_reg_color (RGB color): Color of object counting region |
|
region_thickness (int): Object counting Region thickness |
|
line_dist_thresh (int): Euclidean Distance threshold for line counter |
|
decay_factor (float): value for removing heatmap area after object passed |
|
shape (str): Heatmap shape, rect or circle shape supported |
|
""" |
|
self.imw = imw |
|
self.imh = imh |
|
self.heatmap_alpha = heatmap_alpha |
|
self.view_img = view_img |
|
self.view_in_counts = view_in_counts |
|
self.view_out_counts = view_out_counts |
|
self.colormap = colormap |
|
|
|
|
|
if count_reg_pts is not None: |
|
if len(count_reg_pts) == 2: |
|
print("Line Counter Initiated.") |
|
self.count_reg_pts = count_reg_pts |
|
self.counting_region = LineString(count_reg_pts) |
|
|
|
elif len(count_reg_pts) == 4: |
|
print("Region Counter Initiated.") |
|
self.count_reg_pts = count_reg_pts |
|
self.counting_region = Polygon(self.count_reg_pts) |
|
|
|
else: |
|
print("Region or line points Invalid, 2 or 4 points supported") |
|
print("Using Line Counter Now") |
|
self.counting_region = Polygon([(20, 400), (1260, 400)]) |
|
|
|
|
|
self.heatmap = np.zeros((int(self.imh), int(self.imw)), dtype=np.float32) |
|
|
|
self.count_txt_thickness = count_txt_thickness |
|
self.count_txt_color = count_txt_color |
|
self.count_color = count_color |
|
self.region_color = count_reg_color |
|
self.region_thickness = region_thickness |
|
self.decay_factor = decay_factor |
|
self.line_dist_thresh = line_dist_thresh |
|
self.shape = shape |
|
|
|
|
|
if self.shape not in ["circle", "rect"]: |
|
print("Unknown shape value provided, 'circle' & 'rect' supported") |
|
print("Using Circular shape now") |
|
self.shape = "circle" |
|
|
|
def extract_results(self, tracks): |
|
""" |
|
Extracts results from the provided data. |
|
|
|
Args: |
|
tracks (list): List of tracks obtained from the object tracking process. |
|
""" |
|
self.boxes = tracks[0].boxes.xyxy.cpu() |
|
self.clss = tracks[0].boxes.cls.cpu().tolist() |
|
self.track_ids = tracks[0].boxes.id.int().cpu().tolist() |
|
|
|
def generate_heatmap(self, im0, tracks): |
|
""" |
|
Generate heatmap based on tracking data. |
|
|
|
Args: |
|
im0 (nd array): Image |
|
tracks (list): List of tracks obtained from the object tracking process. |
|
""" |
|
self.im0 = im0 |
|
if tracks[0].boxes.id is None: |
|
self.heatmap = np.zeros((int(self.imh), int(self.imw)), dtype=np.float32) |
|
if self.view_img and self.env_check: |
|
self.display_frames() |
|
return im0 |
|
self.heatmap *= self.decay_factor |
|
self.extract_results(tracks) |
|
self.annotator = Annotator(self.im0, self.count_txt_thickness, None) |
|
|
|
if self.count_reg_pts is not None: |
|
|
|
if self.view_in_counts or self.view_out_counts: |
|
self.annotator.draw_region( |
|
reg_pts=self.count_reg_pts, color=self.region_color, thickness=self.region_thickness |
|
) |
|
|
|
for box, cls, track_id in zip(self.boxes, self.clss, self.track_ids): |
|
if self.shape == "circle": |
|
center = (int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2)) |
|
radius = min(int(box[2]) - int(box[0]), int(box[3]) - int(box[1])) // 2 |
|
|
|
y, x = np.ogrid[0 : self.heatmap.shape[0], 0 : self.heatmap.shape[1]] |
|
mask = (x - center[0]) ** 2 + (y - center[1]) ** 2 <= radius**2 |
|
|
|
self.heatmap[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] += ( |
|
2 * mask[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] |
|
) |
|
|
|
else: |
|
self.heatmap[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] += 2 |
|
|
|
|
|
track_line = self.track_history[track_id] |
|
track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2))) |
|
if len(track_line) > 30: |
|
track_line.pop(0) |
|
|
|
|
|
if len(self.count_reg_pts) == 4: |
|
if self.counting_region.contains(Point(track_line[-1])) and track_id not in self.counting_list: |
|
self.counting_list.append(track_id) |
|
if box[0] < self.counting_region.centroid.x: |
|
self.out_counts += 1 |
|
else: |
|
self.in_counts += 1 |
|
|
|
elif len(self.count_reg_pts) == 2: |
|
distance = Point(track_line[-1]).distance(self.counting_region) |
|
if distance < self.line_dist_thresh and track_id not in self.counting_list: |
|
self.counting_list.append(track_id) |
|
if box[0] < self.counting_region.centroid.x: |
|
self.out_counts += 1 |
|
else: |
|
self.in_counts += 1 |
|
else: |
|
for box, cls in zip(self.boxes, self.clss): |
|
if self.shape == "circle": |
|
center = (int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2)) |
|
radius = min(int(box[2]) - int(box[0]), int(box[3]) - int(box[1])) // 2 |
|
|
|
y, x = np.ogrid[0 : self.heatmap.shape[0], 0 : self.heatmap.shape[1]] |
|
mask = (x - center[0]) ** 2 + (y - center[1]) ** 2 <= radius**2 |
|
|
|
self.heatmap[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] += ( |
|
2 * mask[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] |
|
) |
|
|
|
else: |
|
self.heatmap[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] += 2 |
|
|
|
|
|
heatmap_normalized = cv2.normalize(self.heatmap, None, 0, 255, cv2.NORM_MINMAX) |
|
heatmap_colored = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), self.colormap) |
|
|
|
incount_label = f"In Count : {self.in_counts}" |
|
outcount_label = f"OutCount : {self.out_counts}" |
|
|
|
|
|
counts_label = None |
|
if not self.view_in_counts and not self.view_out_counts: |
|
counts_label = None |
|
elif not self.view_in_counts: |
|
counts_label = outcount_label |
|
elif not self.view_out_counts: |
|
counts_label = incount_label |
|
else: |
|
counts_label = f"{incount_label} {outcount_label}" |
|
|
|
if self.count_reg_pts is not None and counts_label is not None: |
|
self.annotator.count_labels( |
|
counts=counts_label, |
|
count_txt_size=self.count_txt_thickness, |
|
txt_color=self.count_txt_color, |
|
color=self.count_color, |
|
) |
|
|
|
self.im0 = cv2.addWeighted(self.im0, 1 - self.heatmap_alpha, heatmap_colored, self.heatmap_alpha, 0) |
|
|
|
if self.env_check and self.view_img: |
|
self.display_frames() |
|
|
|
return self.im0 |
|
|
|
def display_frames(self): |
|
"""Display frame.""" |
|
cv2.imshow("Ultralytics Heatmap", self.im0) |
|
|
|
if cv2.waitKey(1) & 0xFF == ord("q"): |
|
return |
|
|
|
|
|
if __name__ == "__main__": |
|
Heatmap() |
|
|