# Ultralytics YOLO 🚀, AGPL-3.0 license """ Benchmark a YOLO model formats for speed and accuracy. Usage: from ultralytics.utils.benchmarks import ProfileModels, benchmark ProfileModels(['yolov8n.yaml', 'yolov8s.yaml']).profile() benchmark(model='yolov8n.pt', imgsz=160) Format | `format=argument` | Model --- | --- | --- PyTorch | - | yolov8n.pt TorchScript | `torchscript` | yolov8n.torchscript ONNX | `onnx` | yolov8n.onnx OpenVINO | `openvino` | yolov8n_openvino_model/ TensorRT | `engine` | yolov8n.engine CoreML | `coreml` | yolov8n.mlpackage TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/ TensorFlow GraphDef | `pb` | yolov8n.pb TensorFlow Lite | `tflite` | yolov8n.tflite TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite TensorFlow.js | `tfjs` | yolov8n_web_model/ PaddlePaddle | `paddle` | yolov8n_paddle_model/ NCNN | `ncnn` | yolov8n_ncnn_model/ """ import glob import platform import time from pathlib import Path import numpy as np import torch.cuda from ultralytics import YOLO, YOLOWorld from ultralytics.cfg import TASK2DATA, TASK2METRIC from ultralytics.engine.exporter import export_formats from ultralytics.utils import ASSETS, LINUX, LOGGER, MACOS, TQDM, WEIGHTS_DIR from ultralytics.utils.checks import IS_PYTHON_3_12, check_requirements, check_yolo from ultralytics.utils.files import file_size from ultralytics.utils.torch_utils import select_device def benchmark( model=WEIGHTS_DIR / "yolov8n.pt", data=None, imgsz=160, half=False, int8=False, device="cpu", verbose=False ): """ Benchmark a YOLO model across different formats for speed and accuracy. Args: model (str | Path | optional): Path to the model file or directory. Default is Path(SETTINGS['weights_dir']) / 'yolov8n.pt'. data (str, optional): Dataset to evaluate on, inherited from TASK2DATA if not passed. Default is None. imgsz (int, optional): Image size for the benchmark. Default is 160. half (bool, optional): Use half-precision for the model if True. Default is False. int8 (bool, optional): Use int8-precision for the model if True. Default is False. device (str, optional): Device to run the benchmark on, either 'cpu' or 'cuda'. Default is 'cpu'. verbose (bool | float | optional): If True or a float, assert benchmarks pass with given metric. Default is False. Returns: df (pandas.DataFrame): A pandas DataFrame with benchmark results for each format, including file size, metric, and inference time. Example: ```python from ultralytics.utils.benchmarks import benchmark benchmark(model='yolov8n.pt', imgsz=640) ``` """ import pandas as pd pd.options.display.max_columns = 10 pd.options.display.width = 120 device = select_device(device, verbose=False) if isinstance(model, (str, Path)): model = YOLO(model) y = [] t0 = time.time() for i, (name, format, suffix, cpu, gpu) in export_formats().iterrows(): # index, (name, format, suffix, CPU, GPU) emoji, filename = "❌", None # export defaults try: # Checks if i == 9: # Edge TPU assert LINUX, "Edge TPU export only supported on Linux" elif i == 7: # TF GraphDef assert model.task != "obb", "TensorFlow GraphDef not supported for OBB task" elif i in {5, 10}: # CoreML and TF.js assert MACOS or LINUX, "export only supported on macOS and Linux" if i in {3, 5}: # CoreML and OpenVINO assert not IS_PYTHON_3_12, "CoreML and OpenVINO not supported on Python 3.12" if i in {6, 7, 8, 9, 10}: # All TF formats assert not isinstance(model, YOLOWorld), "YOLOWorldv2 TensorFlow exports not supported by onnx2tf yet" if i in {11}: # Paddle assert not isinstance(model, YOLOWorld), "YOLOWorldv2 Paddle exports not supported yet" if i in {12}: # NCNN assert not isinstance(model, YOLOWorld), "YOLOWorldv2 NCNN exports not supported yet" if "cpu" in device.type: assert cpu, "inference not supported on CPU" if "cuda" in device.type: assert gpu, "inference not supported on GPU" # Export if format == "-": filename = model.ckpt_path or model.cfg exported_model = model # PyTorch format else: filename = model.export(imgsz=imgsz, format=format, half=half, int8=int8, device=device, verbose=False) exported_model = YOLO(filename, task=model.task) assert suffix in str(filename), "export failed" emoji = "❎" # indicates export succeeded # Predict assert model.task != "pose" or i != 7, "GraphDef Pose inference is not supported" assert i not in (9, 10), "inference not supported" # Edge TPU and TF.js are unsupported assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13" # CoreML exported_model.predict(ASSETS / "bus.jpg", imgsz=imgsz, device=device, half=half) # Validate data = data or TASK2DATA[model.task] # task to dataset, i.e. coco8.yaml for task=detect key = TASK2METRIC[model.task] # task to metric, i.e. metrics/mAP50-95(B) for task=detect results = exported_model.val( data=data, batch=1, imgsz=imgsz, plots=False, device=device, half=half, int8=int8, verbose=False ) metric, speed = results.results_dict[key], results.speed["inference"] y.append([name, "✅", round(file_size(filename), 1), round(metric, 4), round(speed, 2)]) except Exception as e: if verbose: assert type(e) is AssertionError, f"Benchmark failure for {name}: {e}" LOGGER.warning(f"ERROR ❌️ Benchmark failure for {name}: {e}") y.append([name, emoji, round(file_size(filename), 1), None, None]) # mAP, t_inference # Print results check_yolo(device=device) # print system info df = pd.DataFrame(y, columns=["Format", "Status❔", "Size (MB)", key, "Inference time (ms/im)"]) name = Path(model.ckpt_path).name s = f"\nBenchmarks complete for {name} on {data} at imgsz={imgsz} ({time.time() - t0:.2f}s)\n{df}\n" LOGGER.info(s) with open("benchmarks.log", "a", errors="ignore", encoding="utf-8") as f: f.write(s) if verbose and isinstance(verbose, float): metrics = df[key].array # values to compare to floor floor = verbose # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n assert all(x > floor for x in metrics if pd.notna(x)), f"Benchmark failure: metric(s) < floor {floor}" return df class ProfileModels: """ ProfileModels class for profiling different models on ONNX and TensorRT. This class profiles the performance of different models, returning results such as model speed and FLOPs. Attributes: paths (list): Paths of the models to profile. num_timed_runs (int): Number of timed runs for the profiling. Default is 100. num_warmup_runs (int): Number of warmup runs before profiling. Default is 10. min_time (float): Minimum number of seconds to profile for. Default is 60. imgsz (int): Image size used in the models. Default is 640. Methods: profile(): Profiles the models and prints the result. Example: ```python from ultralytics.utils.benchmarks import ProfileModels ProfileModels(['yolov8n.yaml', 'yolov8s.yaml'], imgsz=640).profile() ``` """ def __init__( self, paths: list, num_timed_runs=100, num_warmup_runs=10, min_time=60, imgsz=640, half=True, trt=True, device=None, ): """ Initialize the ProfileModels class for profiling models. Args: paths (list): List of paths of the models to be profiled. num_timed_runs (int, optional): Number of timed runs for the profiling. Default is 100. num_warmup_runs (int, optional): Number of warmup runs before the actual profiling starts. Default is 10. min_time (float, optional): Minimum time in seconds for profiling a model. Default is 60. imgsz (int, optional): Size of the image used during profiling. Default is 640. half (bool, optional): Flag to indicate whether to use half-precision floating point for profiling. trt (bool, optional): Flag to indicate whether to profile using TensorRT. Default is True. device (torch.device, optional): Device used for profiling. If None, it is determined automatically. """ self.paths = paths self.num_timed_runs = num_timed_runs self.num_warmup_runs = num_warmup_runs self.min_time = min_time self.imgsz = imgsz self.half = half self.trt = trt # run TensorRT profiling self.device = device or torch.device(0 if torch.cuda.is_available() else "cpu") def profile(self): """Logs the benchmarking results of a model, checks metrics against floor and returns the results.""" files = self.get_files() if not files: print("No matching *.pt or *.onnx files found.") return table_rows = [] output = [] for file in files: engine_file = file.with_suffix(".engine") if file.suffix in (".pt", ".yaml", ".yml"): model = YOLO(str(file)) model.fuse() # to report correct params and GFLOPs in model.info() model_info = model.info() if self.trt and self.device.type != "cpu" and not engine_file.is_file(): engine_file = model.export( format="engine", half=self.half, imgsz=self.imgsz, device=self.device, verbose=False ) onnx_file = model.export( format="onnx", half=self.half, imgsz=self.imgsz, simplify=True, device=self.device, verbose=False ) elif file.suffix == ".onnx": model_info = self.get_onnx_model_info(file) onnx_file = file else: continue t_engine = self.profile_tensorrt_model(str(engine_file)) t_onnx = self.profile_onnx_model(str(onnx_file)) table_rows.append(self.generate_table_row(file.stem, t_onnx, t_engine, model_info)) output.append(self.generate_results_dict(file.stem, t_onnx, t_engine, model_info)) self.print_table(table_rows) return output def get_files(self): """Returns a list of paths for all relevant model files given by the user.""" files = [] for path in self.paths: path = Path(path) if path.is_dir(): extensions = ["*.pt", "*.onnx", "*.yaml"] files.extend([file for ext in extensions for file in glob.glob(str(path / ext))]) elif path.suffix in {".pt", ".yaml", ".yml"}: # add non-existing files.append(str(path)) else: files.extend(glob.glob(str(path))) print(f"Profiling: {sorted(files)}") return [Path(file) for file in sorted(files)] def get_onnx_model_info(self, onnx_file: str): """Retrieves the information including number of layers, parameters, gradients and FLOPs for an ONNX model file. """ return 0.0, 0.0, 0.0, 0.0 # return (num_layers, num_params, num_gradients, num_flops) @staticmethod def iterative_sigma_clipping(data, sigma=2, max_iters=3): """Applies an iterative sigma clipping algorithm to the given data times number of iterations.""" data = np.array(data) for _ in range(max_iters): mean, std = np.mean(data), np.std(data) clipped_data = data[(data > mean - sigma * std) & (data < mean + sigma * std)] if len(clipped_data) == len(data): break data = clipped_data return data def profile_tensorrt_model(self, engine_file: str, eps: float = 1e-3): """Profiles the TensorRT model, measuring average run time and standard deviation among runs.""" if not self.trt or not Path(engine_file).is_file(): return 0.0, 0.0 # Model and input model = YOLO(engine_file) input_data = np.random.rand(self.imgsz, self.imgsz, 3).astype(np.float32) # must be FP32 # Warmup runs elapsed = 0.0 for _ in range(3): start_time = time.time() for _ in range(self.num_warmup_runs): model(input_data, imgsz=self.imgsz, verbose=False) elapsed = time.time() - start_time # Compute number of runs as higher of min_time or num_timed_runs num_runs = max(round(self.min_time / (elapsed + eps) * self.num_warmup_runs), self.num_timed_runs * 50) # Timed runs run_times = [] for _ in TQDM(range(num_runs), desc=engine_file): results = model(input_data, imgsz=self.imgsz, verbose=False) run_times.append(results[0].speed["inference"]) # Convert to milliseconds run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=3) # sigma clipping return np.mean(run_times), np.std(run_times) def profile_onnx_model(self, onnx_file: str, eps: float = 1e-3): """Profiles an ONNX model by executing it multiple times and returns the mean and standard deviation of run times. """ check_requirements("onnxruntime") import onnxruntime as ort # Session with either 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider' sess_options = ort.SessionOptions() sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL sess_options.intra_op_num_threads = 8 # Limit the number of threads sess = ort.InferenceSession(onnx_file, sess_options, providers=["CPUExecutionProvider"]) input_tensor = sess.get_inputs()[0] input_type = input_tensor.type dynamic = not all(isinstance(dim, int) and dim >= 0 for dim in input_tensor.shape) # dynamic input shape input_shape = (1, 3, self.imgsz, self.imgsz) if dynamic else input_tensor.shape # Mapping ONNX datatype to numpy datatype if "float16" in input_type: input_dtype = np.float16 elif "float" in input_type: input_dtype = np.float32 elif "double" in input_type: input_dtype = np.float64 elif "int64" in input_type: input_dtype = np.int64 elif "int32" in input_type: input_dtype = np.int32 else: raise ValueError(f"Unsupported ONNX datatype {input_type}") input_data = np.random.rand(*input_shape).astype(input_dtype) input_name = input_tensor.name output_name = sess.get_outputs()[0].name # Warmup runs elapsed = 0.0 for _ in range(3): start_time = time.time() for _ in range(self.num_warmup_runs): sess.run([output_name], {input_name: input_data}) elapsed = time.time() - start_time # Compute number of runs as higher of min_time or num_timed_runs num_runs = max(round(self.min_time / (elapsed + eps) * self.num_warmup_runs), self.num_timed_runs) # Timed runs run_times = [] for _ in TQDM(range(num_runs), desc=onnx_file): start_time = time.time() sess.run([output_name], {input_name: input_data}) run_times.append((time.time() - start_time) * 1000) # Convert to milliseconds run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=5) # sigma clipping return np.mean(run_times), np.std(run_times) def generate_table_row(self, model_name, t_onnx, t_engine, model_info): """Generates a formatted string for a table row that includes model performance and metric details.""" layers, params, gradients, flops = model_info return ( f"| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.2f} ± {t_onnx[1]:.2f} ms | {t_engine[0]:.2f} ± " f"{t_engine[1]:.2f} ms | {params / 1e6:.1f} | {flops:.1f} |" ) @staticmethod def generate_results_dict(model_name, t_onnx, t_engine, model_info): """Generates a dictionary of model details including name, parameters, GFLOPS and speed metrics.""" layers, params, gradients, flops = model_info return { "model/name": model_name, "model/parameters": params, "model/GFLOPs": round(flops, 3), "model/speed_ONNX(ms)": round(t_onnx[0], 3), "model/speed_TensorRT(ms)": round(t_engine[0], 3), } @staticmethod def print_table(table_rows): """Formats and prints a comparison table for different models with given statistics and performance data.""" gpu = torch.cuda.get_device_name(0) if torch.cuda.is_available() else "GPU" header = ( f"| Model | size
(pixels) | mAPval
50-95 | Speed
CPU ONNX
(ms) | " f"Speed
{gpu} TensorRT
(ms) | params
(M) | FLOPs
(B) |" ) separator = ( "|-------------|---------------------|--------------------|------------------------------|" "-----------------------------------|------------------|-----------------|" ) print(f"\n\n{header}") print(separator) for row in table_rows: print(row)