import math import pandas as pd import numpy as np from datasets import load_dataset import sklearn import joblib from sklearn.datasets import fetch_openml from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder from sklearn.compose import make_column_transformer from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score from sklearn.pipeline import make_pipeline from sklearn.model_selection import train_test_split, RandomizedSearchCV from sklearn.linear_model import LinearRegression data_df = pd.read_csv('insurance.csv') data_df = data_df.drop(columns=['index']) categorical_features = ['sex', 'smoker', 'region'] numerical_features = ['age', 'bmi', 'children', ] target = 'charges' print("Creating data subsets") X = data_df[numerical_features + categorical_features] y = data_df[target] Xtrain, Xtest, ytrain, ytest = train_test_split( X, y, test_size=0.2, random_state=42) numerical_pipeline = Pipeline([('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]) categorical_pipeline = Pipeline([('imputer', SimpleImputer(strategy='most_frequent')),('onehot', OneHotEncoder(handle_unknown='ignore'))]) preprocessor = make_column_transformer((numerical_pipeline, numerical_features), (categorical_pipeline, categorical_features)) model_linear_regression = LinearRegression(n_jobs=-1) model_pipeline = make_pipeline(preprocessor, model_linear_regression ) print("Estimating Model Pipeline") model_pipeline.fit(Xtrain, ytrain) print("Logging Metrics") print(f"R-squared: {r2_score(ytest, model_pipeline.predict(Xtest))}") print("Serializing Model") saved_model_path = "model.joblib" joblib.dump(model_pipeline, saved_model_path)