|
''' |
|
Author: Egrt |
|
Date: 2022-01-13 13:34:10 |
|
LastEditors: [egrt] |
|
LastEditTime: 2022-05-04 12:59:41 |
|
FilePath: \MaskGAN\app.py |
|
''' |
|
import os |
|
os.system('pip install requirements.txt') |
|
from PIL import Image |
|
from maskgan import MASKGAN |
|
import gradio as gr |
|
import os |
|
maskgan = MASKGAN() |
|
|
|
|
|
def inference(img): |
|
lr_shape = [112, 112] |
|
img = img.resize(tuple(lr_shape), Image.BICUBIC) |
|
r_image = maskgan.generate_1x1_image(img) |
|
return r_image |
|
|
|
|
|
title = "MaskGAN:融合无监督的口罩遮挡人脸修复" |
|
description = "使用生成对抗网络对口罩遮挡人脸进行修复,能够有效的恢复被遮挡区域人脸。 @西南科技大学智能控制与图像处理研究室" |
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.10257' target='_blank'>MaskGAN: Face Restoration Using Swin Transformer</a> | <a href='https://github.com/JingyunLiang/SwinIR' target='_blank'>Github Repo</a></p>" |
|
example_img_dir = 'img' |
|
example_img_name = os.listdir(example_img_dir) |
|
examples=[[os.path.join(example_img_dir, image_path)] for image_path in example_img_name if image_path.endswith('.jpg')] |
|
gr.Interface( |
|
inference, |
|
[gr.inputs.Image(type="pil", label="Input")], |
|
gr.outputs.Image(type="pil", label="Output"), |
|
title=title, |
|
description=description, |
|
article=article, |
|
enable_queue=True, |
|
examples=examples |
|
).launch(debug=True) |
|
|