MaskGAN / maskgan.py
白鹭先生
init
73ca179
raw
history blame
3.94 kB
'''
Author: Egrt
Date: 2022-04-07 14:00:52
LastEditors: [egrt]
LastEditTime: 2022-05-04 11:47:21
FilePath: \MaskGAN\maskgan.py
'''
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from PIL import Image
from models.SwinIR import Generator
from utils.utils import cvtColor, preprocess_input
class MASKGAN(object):
#-----------------------------------------#
# 注意修改model_path
#-----------------------------------------#
_defaults = {
#-----------------------------------------------#
# model_path指向logs文件夹下的权值文件
#-----------------------------------------------#
"model_path" : 'model_data/G_FFHQ.pth',
#-----------------------------------------------#
# 上采样的倍数,和训练时一样
#-----------------------------------------------#
"scale_factor" : 1,
#-----------------------------------------------#
# hr_shape
#-----------------------------------------------#
"hr_shape" : [112, 112],
#-------------------------------#
# 是否使用Cuda
# 没有GPU可以设置成False
#-------------------------------#
"cuda" : False,
}
#---------------------------------------------------#
# 初始化MASKGAN
#---------------------------------------------------#
def __init__(self, **kwargs):
self.__dict__.update(self._defaults)
for name, value in kwargs.items():
setattr(self, name, value)
self.generate()
def generate(self):
self.net = Generator(upscale=self.scale_factor, img_size=tuple(self.hr_shape),
window_size=7, img_range=1., depths=[6, 6, 6, 6],
embed_dim=96, num_heads=[6, 6, 6, 6], mlp_ratio=4, upsampler='pixelshuffledirect')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.net = torch.load(self.model_path, map_location=device)
self.net = self.net.eval()
print('{} model, and classes loaded.'.format(self.model_path))
if self.cuda:
self.net = torch.nn.DataParallel(self.net)
cudnn.benchmark = True
self.net = self.net.cuda()
def generate_1x1_image(self, image):
#---------------------------------------------------------#
# 在这里将图像转换成RGB图像,防止灰度图在预测时报错。
# 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
#---------------------------------------------------------#
image = cvtColor(image)
#---------------------------------------------------------#
# 添加上batch_size维度,并进行归一化
#---------------------------------------------------------#
image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image, dtype=np.float32), [0.5,0.5,0.5], [0.5,0.5,0.5]), [2,0,1]), 0)
with torch.no_grad():
image_data = torch.from_numpy(image_data).type(torch.FloatTensor)
if self.cuda:
image_data = image_data.cuda()
#---------------------------------------------------------#
# 将图像输入网络当中进行预测!
#---------------------------------------------------------#
hr_image = self.net(image_data)[0]
#---------------------------------------------------------#
# 将归一化的结果再转成rgb格式
#---------------------------------------------------------#
hr_image = (hr_image.cpu().data.numpy().transpose(1, 2, 0) * 0.5 + 0.5)
hr_image = np.clip(hr_image * 255, 0, 255)
hr_image = Image.fromarray(np.uint8(hr_image))
return hr_image