import gradio as gr from fastai.vision.all import * import json def is_cat(x): return x[0].isupper() learn = load_learner('model.pkl') with open('categories.json', 'r') as f: labels = json.load(f) def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[str(i)]: float(probs[i]) for i in range(len(labels))} title = "Predict flower species" gr.Interface( fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=len(labels)), title=title ).launch()