File size: 5,815 Bytes
47aeb66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
"""
File: config.py
Author: Elena Ryumina and Dmitry Ryumin
Description: Plotting statistical information.
License: MIT License
"""
import matplotlib.pyplot as plt
import numpy as np
import cv2
import torch

# Importing necessary components for the Gradio app
from app.config import DICT_PRED

def show_cam_on_image(
    img: np.ndarray,
    mask: np.ndarray,
    use_rgb: bool = False,
    colormap: int = cv2.COLORMAP_JET,
    image_weight: float = 0.5,
) -> np.ndarray:
    """This function overlays the cam mask on the image as an heatmap.
    By default the heatmap is in BGR format.

    :param img: The base image in RGB or BGR format.
    :param mask: The cam mask.
    :param use_rgb: Whether to use an RGB or BGR heatmap, this should be set to True if 'img' is in RGB format.
    :param colormap: The OpenCV colormap to be used.
    :param image_weight: The final result is image_weight * img + (1-image_weight) * mask.
    :returns: The default image with the cam overlay.

    Implemented by https://github.com/jacobgil/pytorch-grad-cam/blob/master/pytorch_grad_cam/utils/image.py
    """
    heatmap = cv2.applyColorMap(np.uint8(255 * mask), colormap)
    if use_rgb:
        heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
    heatmap = np.float32(heatmap) / 255

    if np.max(img) > 1:
        raise Exception("The input image should np.float32 in the range [0, 1]")

    if image_weight < 0 or image_weight > 1:
        raise Exception(
            f"image_weight should be in the range [0, 1].\
                Got: {image_weight}"
        )

    cam = (1 - image_weight) * heatmap + image_weight * img
    cam = cam / np.max(cam)
    return np.uint8(255 * cam)


def get_heatmaps(
    gradients, activations, name_layer, face_image, use_rgb=True, image_weight=0.6
):
    gradient = gradients[name_layer]
    activation = activations[name_layer]
    pooled_gradients = torch.mean(gradient[0], dim=[0, 2, 3])
    for i in range(activation.size()[1]):
        activation[:, i, :, :] *= pooled_gradients[i]
    heatmap = torch.mean(activation, dim=1).squeeze().cpu()
    heatmap = np.maximum(heatmap, 0)
    heatmap /= torch.max(heatmap)
    heatmap = torch.unsqueeze(heatmap, -1)
    heatmap = cv2.resize(heatmap.detach().numpy(), (224, 224))
    cur_face_hm = cv2.resize(face_image, (224, 224))
    cur_face_hm = np.float32(cur_face_hm) / 255

    heatmap = show_cam_on_image(
        cur_face_hm, heatmap, use_rgb=use_rgb, image_weight=image_weight
    )

    return heatmap

def plot_compound_expression_prediction(
    dict_preds: dict[str, list[float]],
    save_path: str = None,
    frame_indices: list[int] = None,
    colors: list[str] = ["green", "orange", "red", "purple", "blue"],
    figsize: tuple = (12, 6),
    title: str = "Confusion Matrix",
) -> plt.Figure:
    fig, ax = plt.subplots(figsize=figsize)

    for idx, (k, v) in enumerate(dict_preds.items()):
        if idx == 2:
            offset = (idx+1 - len(dict_preds) // 2) * 0.1
        elif idx == 3:
            offset = (idx-1 - len(dict_preds) // 2) * 0.1
        else:
            offset = (idx - len(dict_preds) // 2) * 0.1
        shifted_v = [val + offset + 1 for val in v]
        ax.plot(range(1, len(shifted_v) + 1), shifted_v, color=colors[idx], linestyle='dotted', label=k)

    ax.legend()
    ax.grid(True)
    ax.set_xlabel("Number of frames")
    ax.set_ylabel("Basic emotion / compound expression")
    ax.set_title(title)

    ax.set_xticks([i+1 for i in frame_indices])
    ax.set_yticks(
        range(0, 21)
    )
    ax.set_yticklabels([''] + list(DICT_PRED.values()) + [''])

    fig.tight_layout()

    if save_path:
        fig.savefig(
            save_path,
            format=save_path.rsplit(".", 1)[1],
            bbox_inches="tight",
            pad_inches=0,
        )

    return fig

def display_frame_info(img, text, margin=1.0, box_scale=1.0):
    img_copy = img.copy()
    img_h, img_w, _ = img_copy.shape
    line_width = int(min(img_h, img_w) * 0.001)
    thickness = max(int(line_width / 3), 1)

    font_face = cv2.FONT_HERSHEY_SIMPLEX
    font_color = (0, 0, 0)
    font_scale = thickness / 1.5

    t_w, t_h = cv2.getTextSize(text, font_face, font_scale, None)[0]

    margin_n = int(t_h * margin)
    sub_img = img_copy[0 + margin_n: 0 + margin_n + t_h + int(2 * t_h * box_scale),
              img_w - t_w - margin_n - int(2 * t_h * box_scale): img_w - margin_n]

    white_rect = np.ones(sub_img.shape, dtype=np.uint8) * 255

    img_copy[0 + margin_n: 0 + margin_n + t_h + int(2 * t_h * box_scale),
    img_w - t_w - margin_n - int(2 * t_h * box_scale):img_w - margin_n] = cv2.addWeighted(sub_img, 0.5, white_rect, .5, 1.0)

    cv2.putText(img=img_copy,
                text=text,
                org=(img_w - t_w - margin_n - int(2 * t_h * box_scale) // 2,
                     0 + margin_n + t_h + int(2 * t_h * box_scale) // 2),
                fontFace=font_face,
                fontScale=font_scale,
                color=font_color,
                thickness=thickness,
                lineType=cv2.LINE_AA,
                bottomLeftOrigin=False)

    return img_copy

def plot_audio(time_axis, waveform, frame_indices, fps, figsize=(10, 4)) -> plt.Figure:
    frame_times = np.array(frame_indices) / fps

    fig, ax = plt.subplots(figsize=figsize)
    ax.plot(time_axis, waveform[0])
    ax.set_xlabel('Time (frames)')
    ax.set_ylabel('Amplitude')
    ax.grid(True)

    ax.set_xticks(frame_times)
    ax.set_xticklabels([f'{int(frame_time*fps)+1}' for frame_time in frame_times])

    fig.tight_layout()

    return fig

def plot_images(image_paths):
    fig, axes = plt.subplots(1, len(image_paths), figsize=(12, 2))

    for ax, img_path in zip(axes, image_paths):
        ax.imshow(img_path)
        ax.axis('off')

    fig.tight_layout()
    return fig