import gradio as gr import edge_tts import asyncio import tempfile import os # Default voice to be used DEFAULT_VOICE = "en-US-AndrewMultilingualNeural" # Text-to-speech function async def text_to_speech(text, voice=DEFAULT_VOICE, rate=0, pitch=0): if not text.strip(): return None, gr.Warning("Please enter text to convert.") rate_str = f"{rate:+d}%" pitch_str = f"{pitch:+d}Hz" communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) return tmp_path, None # Gradio interface function def tts_interface(text): # Pass the default voice and default values for rate and pitch audio, warning = asyncio.run(text_to_speech(text)) return audio, warning # Create Gradio application async def create_demo(): demo = gr.Interface( fn=tts_interface, inputs=[ gr.Textbox(label="Input Text", lines=5) ], outputs=[ gr.Audio(label="Generated Audio", type="filepath"), gr.Markdown(label="Warning", visible=False) ], title="Elieon TeleText AI", analytics_enabled=False, allow_flagging=False ) return demo # Run the application if __name__ == "__main__": demo = asyncio.run(create_demo()) demo.launch()