Spaces:
Runtime error
Runtime error
Workkkk
Browse files- app.py +2 -2
- inference.py +11 -38
app.py
CHANGED
@@ -2,6 +2,6 @@ import gradio as gr
|
|
2 |
from inference import *
|
3 |
|
4 |
iface = gr.Interface(fn=inference,
|
5 |
-
inputs=
|
6 |
outputs="text")
|
7 |
-
iface.launch(
|
|
|
2 |
from inference import *
|
3 |
|
4 |
iface = gr.Interface(fn=inference,
|
5 |
+
inputs=gr.inputs.Audio(source="upload", type="filepath"),
|
6 |
outputs="text")
|
7 |
+
iface.launch()
|
inference.py
CHANGED
@@ -1,44 +1,17 @@
|
|
1 |
-
import math, librosa
|
2 |
import numpy as np
|
|
|
3 |
|
4 |
from tensorflow import keras
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
sr, signal = file_path#librosa.load(file_path, sr=SAMPLE_RATE)
|
16 |
-
signal = signal.astype(np.float64)
|
17 |
-
|
18 |
-
duration = librosa.get_duration(y=signal, sr=sr) #30 seconds
|
19 |
-
print(duration)
|
20 |
-
num_segments = int(duration/length_segment) #3
|
21 |
-
# process segments, extracting mfccs and storing data
|
22 |
-
for s in range(num_segments+1):
|
23 |
-
start_sample = num_samples_per_segment * s
|
24 |
-
finish_sample = start_sample + num_samples_per_segment
|
25 |
-
try:
|
26 |
-
mfcc = librosa.feature.mfcc(y=signal[start_sample:finish_sample],
|
27 |
-
sr=SAMPLE_RATE,
|
28 |
-
n_fft=n_fft,
|
29 |
-
n_mfcc=n_mfcc,
|
30 |
-
hop_length=hop_length
|
31 |
-
)
|
32 |
-
#(13, 431)
|
33 |
-
mfcc = mfcc.T # A transpose
|
34 |
-
# store mfcc for segment if it has the expected length
|
35 |
-
if len(mfcc) == 431:
|
36 |
-
mfcc_batch.append(mfcc.tolist())
|
37 |
-
|
38 |
-
except Exception as e:
|
39 |
-
print(e)
|
40 |
-
continue
|
41 |
-
return mfcc_batch
|
42 |
|
43 |
def inference(filename, model_path='gtzan10_lstm_0.7179_l_1.12.h5'):
|
44 |
model = keras.models.load_model(model_path)
|
@@ -52,7 +25,7 @@ def inference(filename, model_path='gtzan10_lstm_0.7179_l_1.12.h5'):
|
|
52 |
'pop',
|
53 |
'reggae',
|
54 |
'rock']
|
55 |
-
mfcc =
|
56 |
pred = model.predict(mfcc)
|
57 |
genre = [mapping[i] for i in np.argmax(pred, axis=1)]
|
58 |
|
|
|
|
|
1 |
import numpy as np
|
2 |
+
import requests
|
3 |
|
4 |
from tensorflow import keras
|
5 |
|
6 |
+
def get_mfccs(filename):
|
7 |
+
# Load the file to send
|
8 |
+
files = {'audio': open(filename, 'rb')}
|
9 |
+
# Send the HTTP request and get the reply
|
10 |
+
reply = requests.post("https://librosa-utils.herokuapp.com/mfcc_batch", files=files)
|
11 |
+
# Extract the text from the reply and decode the JSON into a list
|
12 |
+
pitch_track = reply.json()
|
13 |
+
print(np.shape(pitch_track['mfccs']))
|
14 |
+
return np.array(pitch_track['mfccs'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def inference(filename, model_path='gtzan10_lstm_0.7179_l_1.12.h5'):
|
17 |
model = keras.models.load_model(model_path)
|
|
|
25 |
'pop',
|
26 |
'reggae',
|
27 |
'rock']
|
28 |
+
mfcc = get_mfccs(filename)
|
29 |
pred = model.predict(mfcc)
|
30 |
genre = [mapping[i] for i in np.argmax(pred, axis=1)]
|
31 |
|