File size: 4,778 Bytes
175d074 0fbf7d5 175d074 afec61d 175d074 afec61d 175d074 afec61d 175d074 0fbf7d5 175d074 5448adf 175d074 5448adf 175d074 cba3268 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import gradio as gr
from datasets import load_dataset
import os
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
from threading import Thread
from sentence_transformers import SentenceTransformer
import faiss
import fitz # PyMuPDF
# ํ๊ฒฝ ๋ณ์์์ Hugging Face ํ ํฐ ๊ฐ์ ธ์ค๊ธฐ
token = os.environ.get("HF_TOKEN")
# ์๋ฒ ๋ฉ ๋ชจ๋ธ ๋ก๋
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
# Lazy Loading PDF ํ
์คํธ์ ์๋ฒ ๋ฉ
law_sentences = None
law_embeddings = None
index = None
def load_law_data():
global law_sentences, law_embeddings, index
if law_sentences is None or law_embeddings is None or index is None:
# PDF์์ ํ
์คํธ ์ถ์ถ
pdf_path = "laws.pdf" # ์ฌ๊ธฐ์ ์ค์ PDF ๊ฒฝ๋ก๋ฅผ ์
๋ ฅํ์ธ์.
doc = fitz.open(pdf_path)
law_text = ""
for page in doc:
law_text += page.get_text()
# ํ
์คํธ๋ฅผ ๋ฌธ์ฅ ๋จ์๋ก ๋๋๊ณ ์๋ฒ ๋ฉ
law_sentences = law_text.split('\n') # PDF ๊ตฌ์กฐ์ ๋ฐ๋ผ ๋ถํ ์ ์กฐ์
law_embeddings = ST.encode(law_sentences)
# FAISS ์ธ๋ฑ์ค ์์ฑ ๋ฐ ์๋ฒ ๋ฉ ์ถ๊ฐ
index = faiss.IndexFlatL2(law_embeddings.shape[1])
index.add(law_embeddings)
# Hugging Face์์ ๋ฒ๋ฅ ์๋ด ๋ฐ์ดํฐ์
๋ก๋
dataset = load_dataset("jihye-moon/LawQA-Ko")
data = dataset["train"]
# ์ง๋ฌธ ์ปฌ๋ผ์ ์๋ฒ ๋ฉํ์ฌ ์๋ก์ด ์ปฌ๋ผ์ ์ถ๊ฐ
data = data.map(lambda x: {"question_embedding": ST.encode(x["question"])}, batched=True)
data.add_faiss_index(column="question_embedding")
# LLaMA ๋ชจ๋ธ ์ค์ (์์ํ ์์ด)
model_id = "google/gemma-2-2b-it"
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16, # ์์ํ ์์ด bfloat16 ์ฌ์ฉ
device_map="auto",
token=token
)
SYS_PROMPT = """You are an assistant for answering legal questions.
... (์ดํ ์๋ต, ๊ธฐ์กด SYS_PROMPT ๊ทธ๋๋ก ์ ์ง) ...
"""
# ๋ฒ๋ฅ ๋ฌธ์ ๊ฒ์ ํจ์
def search_law(query, k=5):
load_law_data() # PDF ํ
์คํธ์ ์๋ฒ ๋ฉ Lazy Loading
query_embedding = ST.encode([query])
D, I = index.search(query_embedding, k)
return [(law_sentences[i], D[0][idx]) for idx, i in enumerate(I[0])]
# ๋ฒ๋ฅ ์๋ด ๋ฐ์ดํฐ ๊ฒ์ ํจ์
def search_qa(query, k=3):
scores, retrieved_examples = data.get_nearest_examples(
"question_embedding", ST.encode(query), k=k
)
return [retrieved_examples["answer"][i] for i in range(k)]
# ์ต์ข
ํ๋กฌํํธ ์์ฑ
def format_prompt(prompt, law_docs, qa_docs):
PROMPT = f"Question: {prompt}\n\nLegal Context:\n"
for doc in law_docs:
PROMPT += f"{doc[0]}\n"
PROMPT += "\nLegal QA:\n"
for doc in qa_docs:
PROMPT += f"{doc}\n"
return PROMPT
# ์ฑ๋ด ์๋ต ํจ์
def talk(prompt, history):
law_results = search_law(prompt, k=3)
qa_results = search_qa(prompt, k=3)
retrieved_law_docs = [result[0] for result in law_results]
formatted_prompt = format_prompt(prompt, retrieved_law_docs, qa_results)
formatted_prompt = formatted_prompt[:2000] # GPU ๋ฉ๋ชจ๋ฆฌ ๋ถ์กฑ์ ํผํ๊ธฐ ์ํด ํ๋กฌํํธ ์ ํ
messages = [{"role": "system", "content": SYS_PROMPT}, {"role": "user", "content": formatted_prompt}]
# ๋ชจ๋ธ์๊ฒ ์์ฑ ์ง์
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
streamer = TextIteratorStreamer(
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=64,
do_sample=True,
top_p=0.95,
temperature=0.2,
eos_token_id=tokenizer.eos_token_id,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
# Gradio ์ธํฐํ์ด์ค ์ค์
TITLE = "Legal RAG Chatbot"
DESCRIPTION = """A chatbot that uses Retrieval-Augmented Generation (RAG) for legal consultation.
This chatbot can search legal documents and previous legal QA pairs to provide answers."""
demo = gr.ChatInterface(
fn=talk,
chatbot=gr.Chatbot(
show_label=True,
show_share_button=True,
show_copy_button=True,
likeable=True,
layout="bubble",
bubble_full_width=False,
),
theme="Soft",
examples=[["What are the regulations on data privacy?"]],
title=TITLE,
description=DESCRIPTION,
)
# Gradio ๋ฐ๋ชจ ์คํ
demo.launch(debug=True, server_port=7860)
|