import streamlit as st from transformers import AutoTokenizer, AutoConfig, AutoModelForSequenceClassification from scipy.special import softmax # Load your model and tokenizer model_path = "Enyonam/distilbert-base-uncased-Distilbert-Model" tokenizer = AutoTokenizer.from_pretrained(model_path) config = AutoConfig.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained(model_path) # Preprocess text (username and link placeholders) #In summary, this preprocessing function helps ensure that usernames and links in the input text do not interfere with the sentiment analysis performed by the model. It replaces them with placeholder tokens to maintain the integrity of the text's structure while anonymizing or standardizing specific elements. def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) def sentiment_analysis(text): text = preprocess(text) # PyTorch-based models encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores_ = output[0][0].detach().numpy() scores_ = softmax(scores_) # Format output dict of scores labels = ['Negative', 'Neutral', 'Positive'] scores = {l: float(s) for (l, s) in zip(labels, scores_)} return scores # Streamlit app layout with two columns st.title("Sentiment Analysis App") st.write(" Sentiment analysis, also known as opinion mining, is the process of determining the emotional tone or sentiment expressed in text data, whether it's positive,negative, or neutral") st.image("Assets/sent_emoji.jpg", caption="Sentiments examples", use_column_width=True) # Input text area for user to enter a tweet in the left column input_text = st.text_area("Write your tweet here...") # Output area for displaying sentiment in the right column if st.button("Analyze Sentiment"): if input_text: # Perform sentiment analysis using the loaded model scores = sentiment_analysis(input_text) # Display sentiment scores in the right column st.text("Sentiment Scores:") for label, score in scores.items(): st.text(f"{label}: {score:.2f}") # Determine the overall sentiment label sentiment_label = max(scores, key=scores.get) # Map sentiment labels to human-readable forms sentiment_mapping = { "Negative": "Negative", "Neutral": "Neutral", "Positive": "Positive" } sentiment_readable = sentiment_mapping.get(sentiment_label, "Unknown") # Display the sentiment label in the right column st.text(f"Sentiment: {sentiment_readable}") # Button to Clear the input text if st.button("Clear Input"): input_text = ""