Spaces:
Runtime error
Runtime error
File size: 3,223 Bytes
898fdaa 64e1ee8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import torch
from torch import nn
from torch.nn import functional as F
from attention import SelfAttention
class VAE_AttentionBlock(nn.Module):
def __init__(self, channels):
super().__init__()
self.groupnorm = nn.GroupNorm(32, channels)
self.attention = SelfAttention(1, channels)
def forward(self, x):
residue = x
x = self.groupnorm(x)
n, c, h, w = x.shape
x = x.view((n, c, h * w))
x = x.transpose(-1, -2)
x = self.attention(x)
x = x.transpose(-1, -2)
x = x.view((n, c, h, w))
x += residue
return x
class VAE_ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.groupnorm_1 = nn.GroupNorm(32, in_channels)
self.conv_1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.groupnorm_2 = nn.GroupNorm(32, out_channels)
self.conv_2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
if in_channels == out_channels:
self.residual_layer = nn.Identity()
else:
self.residual_layer = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0)
def forward(self, x):
residue = x
x = self.groupnorm_1(x)
x = F.silu(x)
x = self.conv_1(x)
x = self.groupnorm_2(x)
x = F.silu(x)
x = self.conv_2(x)
return x + self.residual_layer(residue)
class VAE_Decoder(nn.Sequential):
def __init__(self):
super().__init__(
nn.Conv2d(4, 4, kernel_size=1, padding=0),
nn.Conv2d(4, 512, kernel_size=3, padding=1),
VAE_ResidualBlock(512, 512),
VAE_AttentionBlock(512),
VAE_ResidualBlock(512, 512),
VAE_ResidualBlock(512, 512),
VAE_ResidualBlock(512, 512),
VAE_ResidualBlock(512, 512),
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 4, Width / 4)
nn.Upsample(scale_factor=2),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
VAE_ResidualBlock(512, 512),
VAE_ResidualBlock(512, 512),
VAE_ResidualBlock(512, 512),
# (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 2, Width / 2)
nn.Upsample(scale_factor=2),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
VAE_ResidualBlock(512, 256),
VAE_ResidualBlock(256, 256),
VAE_ResidualBlock(256, 256),
nn.Upsample(scale_factor=2),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
VAE_ResidualBlock(256, 128),
VAE_ResidualBlock(128, 128),
VAE_ResidualBlock(128, 128),
nn.GroupNorm(32, 128),
nn.SiLU(),
nn.Conv2d(128, 3, kernel_size=3, padding=1),
)
def forward(self, x):
x /= 0.18215
for module in self:
x = module(x)
return x |