poem_analysis / individual_analyzes.py
esocoder's picture
first commit
996aa19
raw
history blame
1.83 kB
import streamlit as st
from transformers import pipeline
from utils import read_poems_from_directory
import matplotlib.pyplot as plt
sentiment_classifier = pipeline("sentiment-analysis")
emotion_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
def analyze_poem(poem):
sentiment = sentiment_classifier(poem)[0]
emotion_scores = emotion_classifier(poem)[0]
emotion = max(emotion_scores, key=lambda x: x['score'])['label']
return sentiment, emotion, emotion_scores
def plot_emotion_scores(emotion_scores):
emotions = [score['label'] for score in emotion_scores]
scores = [score['score'] for score in emotion_scores]
fig, ax = plt.subplots()
ax.bar(emotions, scores)
ax.set_xlabel("Emotion")
ax.set_ylabel("Score")
ax.set_title("Emotion Scores")
plt.xticks(rotation=45)
plt.tight_layout()
return fig
def analyze_individual_page():
st.header("Analyze Poems")
poems_directory = "poems"
poems = read_poems_from_directory(poems_directory)
if poems:
for i, poem in enumerate(poems, start=1):
st.subheader(f"Poem {i}")
st.text(poem)
sentiment, emotion, emotion_scores = analyze_poem(poem)
st.write(f"Sentiment: {sentiment['label']} (score: {sentiment['score']:.2f})")
st.write(f"Emotion: {emotion}")
# Plot emotion scores
fig = plot_emotion_scores(emotion_scores)
st.pyplot(fig)
else:
st.warning("No poems found in the 'poems' directory.")
def analyze_sentiment(poems):
sentiment_labels = []
for poem in poems:
sentiment = sentiment_classifier(poem)[0]
sentiment_labels.append(sentiment['label'])
return sentiment_labels