Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,276 Bytes
9892334 7a81b42 76be739 9892334 76be739 9892334 76be739 9892334 76be739 9892334 76be739 9892334 76be739 9892334 76be739 9892334 067bc73 9892334 067bc73 9892334 7a81b42 76be739 7a81b42 9892334 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import os
import gc
import torch
from diffusers import UniPCMultistepScheduler, AutoencoderKL, ControlNetModel
from safetensors.torch import load_file
from pipeline.pipeline_controlnext import StableDiffusionXLControlNeXtPipeline
from models.unet import UNet2DConditionModel
from models.controlnet import ControlNetModel
from . import utils
UNET_CONFIG = {
"act_fn": "silu",
"addition_embed_type": "text_time",
"addition_embed_type_num_heads": 64,
"addition_time_embed_dim": 256,
"attention_head_dim": [
5,
10,
20
],
"block_out_channels": [
320,
640,
1280
],
"center_input_sample": False,
"class_embed_type": None,
"class_embeddings_concat": False,
"conv_in_kernel": 3,
"conv_out_kernel": 3,
"cross_attention_dim": 2048,
"cross_attention_norm": None,
"down_block_types": [
"DownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D"
],
"downsample_padding": 1,
"dual_cross_attention": False,
"encoder_hid_dim": None,
"encoder_hid_dim_type": None,
"flip_sin_to_cos": True,
"freq_shift": 0,
"in_channels": 4,
"layers_per_block": 2,
"mid_block_only_cross_attention": None,
"mid_block_scale_factor": 1,
"mid_block_type": "UNetMidBlock2DCrossAttn",
"norm_eps": 1e-05,
"norm_num_groups": 32,
"num_attention_heads": None,
"num_class_embeds": None,
"only_cross_attention": False,
"out_channels": 4,
"projection_class_embeddings_input_dim": 2816,
"resnet_out_scale_factor": 1.0,
"resnet_skip_time_act": False,
"resnet_time_scale_shift": "default",
"sample_size": 128,
"time_cond_proj_dim": None,
"time_embedding_act_fn": None,
"time_embedding_dim": None,
"time_embedding_type": "positional",
"timestep_post_act": None,
"transformer_layers_per_block": [
1,
2,
10
],
"up_block_types": [
"CrossAttnUpBlock2D",
"CrossAttnUpBlock2D",
"UpBlock2D"
],
"upcast_attention": None,
"use_linear_projection": True
}
CONTROLNET_CONFIG = {
'in_channels': [128, 128],
'out_channels': [128, 256],
'groups': [4, 8],
'time_embed_dim': 256,
'final_out_channels': 320,
'_use_default_values': ['time_embed_dim', 'groups', 'in_channels', 'final_out_channels', 'out_channels']
}
def get_pipeline(
pretrained_model_name_or_path,
unet_model_name_or_path,
controlnet_model_name_or_path,
vae_model_name_or_path=None,
lora_path=None,
load_weight_increasement=False,
enable_xformers_memory_efficient_attention=False,
revision=None,
variant=None,
hf_cache_dir=None,
use_safetensors=True,
device=None,
):
pipeline_init_kwargs = {}
print(f"loading unet from {pretrained_model_name_or_path}")
if os.path.isfile(pretrained_model_name_or_path):
# load unet from local checkpoint
unet_sd = load_file(pretrained_model_name_or_path) if pretrained_model_name_or_path.endswith(".safetensors") else torch.load(pretrained_model_name_or_path)
unet_sd = utils.extract_unet_state_dict(unet_sd)
unet_sd = utils.convert_sdxl_unet_state_dict_to_diffusers(unet_sd)
unet = UNet2DConditionModel.from_config(UNET_CONFIG)
unet.load_state_dict(unet_sd, strict=True)
else:
unet = UNet2DConditionModel.from_pretrained(
pretrained_model_name_or_path,
cache_dir=hf_cache_dir,
variant=variant,
torch_dtype=torch.float16,
use_safetensors=use_safetensors,
subfolder="unet",
)
unet = unet.to(dtype=torch.float16)
pipeline_init_kwargs["unet"] = unet
if vae_model_name_or_path is not None:
print(f"loading vae from {vae_model_name_or_path}")
vae = AutoencoderKL.from_pretrained(vae_model_name_or_path, cache_dir=hf_cache_dir, torch_dtype=torch.float16).to(device)
pipeline_init_kwargs["vae"] = vae
if controlnet_model_name_or_path is not None:
pipeline_init_kwargs["controlnet"] = ControlNetModel.from_config(CONTROLNET_CONFIG).to(device, dtype=torch.float32) # init
print(f"loading pipeline from {pretrained_model_name_or_path}")
if os.path.isfile(pretrained_model_name_or_path):
pipeline: StableDiffusionXLControlNeXtPipeline = StableDiffusionXLControlNeXtPipeline.from_single_file(
pretrained_model_name_or_path,
use_safetensors=pretrained_model_name_or_path.endswith(".safetensors"),
local_files_only=True,
cache_dir=hf_cache_dir,
**pipeline_init_kwargs,
)
else:
pipeline: StableDiffusionXLControlNeXtPipeline = StableDiffusionXLControlNeXtPipeline.from_pretrained(
pretrained_model_name_or_path,
revision=revision,
variant=variant,
use_safetensors=use_safetensors,
cache_dir=hf_cache_dir,
**pipeline_init_kwargs,
)
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
if unet_model_name_or_path is not None:
print(f"loading controlnext unet from {unet_model_name_or_path}")
pipeline.load_controlnext_unet_weights(
unet_model_name_or_path,
load_weight_increasement=load_weight_increasement,
use_safetensors=True,
torch_dtype=torch.float16,
cache_dir=hf_cache_dir,
)
if controlnet_model_name_or_path is not None:
print(f"loading controlnext controlnet from {controlnet_model_name_or_path}")
pipeline.load_controlnext_controlnet_weights(
controlnet_model_name_or_path,
use_safetensors=True,
torch_dtype=torch.float32,
cache_dir=hf_cache_dir,
)
pipeline.set_progress_bar_config()
pipeline = pipeline.to(device, dtype=torch.float16)
if lora_path is not None:
pipeline.load_lora_weights(lora_path)
if enable_xformers_memory_efficient_attention:
pipeline.enable_xformers_memory_efficient_attention()
gc.collect()
if str(device) == 'cuda' and torch.cuda.is_available():
torch.cuda.empty_cache()
return pipeline
def get_scheduler(
scheduler_name,
scheduler_config,
):
if scheduler_name == 'Euler A':
from diffusers.schedulers import EulerAncestralDiscreteScheduler
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config)
elif scheduler_name == 'UniPC':
from diffusers.schedulers import UniPCMultistepScheduler
scheduler = UniPCMultistepScheduler.from_config(scheduler_config)
elif scheduler_name == 'Euler':
from diffusers.schedulers import EulerDiscreteScheduler
scheduler = EulerDiscreteScheduler.from_config(scheduler_config)
elif scheduler_name == 'DDIM':
from diffusers.schedulers import DDIMScheduler
scheduler = DDIMScheduler.from_config(scheduler_config)
elif scheduler_name == 'DDPM':
from diffusers.schedulers import DDPMScheduler
scheduler = DDPMScheduler.from_config(scheduler_config)
else:
raise ValueError(f"Unknown scheduler: {scheduler_name}")
return scheduler
|