# This file code from T2M(https://github.com/EricGuo5513/text-to-motion), licensed under the https://github.com/EricGuo5513/text-to-motion/blob/main/LICENSE. # Copyright (c) 2022 Chuan Guo import torch import torch.nn as nn import numpy as np import time import math from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence import torch.nn.functional as F class ContrastiveLoss(torch.nn.Module): """ Contrastive loss function. Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf """ def __init__(self, margin=3.0): super(ContrastiveLoss, self).__init__() self.margin = margin def forward(self, output1, output2, label): euclidean_distance = F.pairwise_distance(output1, output2, keepdim=True) loss_contrastive = torch.mean((1-label) * torch.pow(euclidean_distance, 2) + (label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2)) return loss_contrastive def init_weight(m): if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d): nn.init.xavier_normal_(m.weight) # m.bias.data.fill_(0.01) if m.bias is not None: nn.init.constant_(m.bias, 0) def reparameterize(mu, logvar): s_var = logvar.mul(0.5).exp_() eps = s_var.data.new(s_var.size()).normal_() return eps.mul(s_var).add_(mu) # batch_size, dimension and position # output: (batch_size, dim) def positional_encoding(batch_size, dim, pos): assert batch_size == pos.shape[0] positions_enc = np.array([ [pos[j] / np.power(10000, (i-i%2)/dim) for i in range(dim)] for j in range(batch_size) ], dtype=np.float32) positions_enc[:, 0::2] = np.sin(positions_enc[:, 0::2]) positions_enc[:, 1::2] = np.cos(positions_enc[:, 1::2]) return torch.from_numpy(positions_enc).float() def get_padding_mask(batch_size, seq_len, cap_lens): cap_lens = cap_lens.data.tolist() mask_2d = torch.ones((batch_size, seq_len, seq_len), dtype=torch.float32) for i, cap_len in enumerate(cap_lens): mask_2d[i, :, :cap_len] = 0 return mask_2d.bool(), 1 - mask_2d[:, :, 0].clone() class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=300): super(PositionalEncoding, self).__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) # pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, pos): return self.pe[pos] class MovementConvEncoder(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(MovementConvEncoder, self).__init__() self.main = nn.Sequential( nn.Conv1d(input_size, hidden_size, 4, 2, 1), nn.Dropout(0.2, inplace=True), nn.LeakyReLU(0.2, inplace=True), nn.Conv1d(hidden_size, output_size, 4, 2, 1), nn.Dropout(0.2, inplace=True), nn.LeakyReLU(0.2, inplace=True), ) self.out_net = nn.Linear(output_size, output_size) self.main.apply(init_weight) self.out_net.apply(init_weight) def forward(self, inputs): inputs = inputs.permute(0, 2, 1) outputs = self.main(inputs).permute(0, 2, 1) # print(outputs.shape) return self.out_net(outputs) class MovementConvDecoder(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(MovementConvDecoder, self).__init__() self.main = nn.Sequential( nn.ConvTranspose1d(input_size, hidden_size, 4, 2, 1), # nn.Dropout(0.2, inplace=True), nn.LeakyReLU(0.2, inplace=True), nn.ConvTranspose1d(hidden_size, output_size, 4, 2, 1), # nn.Dropout(0.2, inplace=True), nn.LeakyReLU(0.2, inplace=True), ) self.out_net = nn.Linear(output_size, output_size) self.main.apply(init_weight) self.out_net.apply(init_weight) def forward(self, inputs): inputs = inputs.permute(0, 2, 1) outputs = self.main(inputs).permute(0, 2, 1) return self.out_net(outputs) class TextVAEDecoder(nn.Module): def __init__(self, text_size, input_size, output_size, hidden_size, n_layers): super(TextVAEDecoder, self).__init__() self.input_size = input_size self.output_size = output_size self.hidden_size = hidden_size self.n_layers = n_layers self.emb = nn.Sequential( nn.Linear(input_size, hidden_size), nn.LayerNorm(hidden_size), nn.LeakyReLU(0.2, inplace=True)) self.z2init = nn.Linear(text_size, hidden_size * n_layers) self.gru = nn.ModuleList([nn.GRUCell(hidden_size, hidden_size) for i in range(self.n_layers)]) self.positional_encoder = PositionalEncoding(hidden_size) self.output = nn.Sequential( nn.Linear(hidden_size, hidden_size), nn.LayerNorm(hidden_size), nn.LeakyReLU(0.2, inplace=True), nn.Linear(hidden_size, output_size) ) # # self.output = nn.Sequential( # nn.Linear(hidden_size, hidden_size), # nn.LayerNorm(hidden_size), # nn.LeakyReLU(0.2, inplace=True), # nn.Linear(hidden_size, output_size-4) # ) # self.contact_net = nn.Sequential( # nn.Linear(output_size-4, 64), # nn.LayerNorm(64), # nn.LeakyReLU(0.2, inplace=True), # nn.Linear(64, 4) # ) self.output.apply(init_weight) self.emb.apply(init_weight) self.z2init.apply(init_weight) # self.contact_net.apply(init_weight) def get_init_hidden(self, latent): hidden = self.z2init(latent) hidden = torch.split(hidden, self.hidden_size, dim=-1) return list(hidden) def forward(self, inputs, last_pred, hidden, p): h_in = self.emb(inputs) pos_enc = self.positional_encoder(p).to(inputs.device).detach() h_in = h_in + pos_enc for i in range(self.n_layers): # print(h_in.shape) hidden[i] = self.gru[i](h_in, hidden[i]) h_in = hidden[i] pose_pred = self.output(h_in) # pose_pred = self.output(h_in) + last_pred.detach() # contact = self.contact_net(pose_pred) # return torch.cat([pose_pred, contact], dim=-1), hidden return pose_pred, hidden class TextDecoder(nn.Module): def __init__(self, text_size, input_size, output_size, hidden_size, n_layers): super(TextDecoder, self).__init__() self.input_size = input_size self.output_size = output_size self.hidden_size = hidden_size self.n_layers = n_layers self.emb = nn.Sequential( nn.Linear(input_size, hidden_size), nn.LayerNorm(hidden_size), nn.LeakyReLU(0.2, inplace=True)) self.gru = nn.ModuleList([nn.GRUCell(hidden_size, hidden_size) for i in range(self.n_layers)]) self.z2init = nn.Linear(text_size, hidden_size * n_layers) self.positional_encoder = PositionalEncoding(hidden_size) self.mu_net = nn.Linear(hidden_size, output_size) self.logvar_net = nn.Linear(hidden_size, output_size) self.emb.apply(init_weight) self.z2init.apply(init_weight) self.mu_net.apply(init_weight) self.logvar_net.apply(init_weight) def get_init_hidden(self, latent): hidden = self.z2init(latent) hidden = torch.split(hidden, self.hidden_size, dim=-1) return list(hidden) def forward(self, inputs, hidden, p): # print(inputs.shape) x_in = self.emb(inputs) pos_enc = self.positional_encoder(p).to(inputs.device).detach() x_in = x_in + pos_enc for i in range(self.n_layers): hidden[i] = self.gru[i](x_in, hidden[i]) h_in = hidden[i] mu = self.mu_net(h_in) logvar = self.logvar_net(h_in) z = reparameterize(mu, logvar) return z, mu, logvar, hidden class AttLayer(nn.Module): def __init__(self, query_dim, key_dim, value_dim): super(AttLayer, self).__init__() self.W_q = nn.Linear(query_dim, value_dim) self.W_k = nn.Linear(key_dim, value_dim, bias=False) self.W_v = nn.Linear(key_dim, value_dim) self.softmax = nn.Softmax(dim=1) self.dim = value_dim self.W_q.apply(init_weight) self.W_k.apply(init_weight) self.W_v.apply(init_weight) def forward(self, query, key_mat): ''' query (batch, query_dim) key (batch, seq_len, key_dim) ''' # print(query.shape) query_vec = self.W_q(query).unsqueeze(-1) # (batch, value_dim, 1) val_set = self.W_v(key_mat) # (batch, seq_len, value_dim) key_set = self.W_k(key_mat) # (batch, seq_len, value_dim) weights = torch.matmul(key_set, query_vec) / np.sqrt(self.dim) co_weights = self.softmax(weights) # (batch, seq_len, 1) values = val_set * co_weights # (batch, seq_len, value_dim) pred = values.sum(dim=1) # (batch, value_dim) return pred, co_weights def short_cut(self, querys, keys): return self.W_q(querys), self.W_k(keys) class TextEncoderBiGRU(nn.Module): def __init__(self, word_size, pos_size, hidden_size, device): super(TextEncoderBiGRU, self).__init__() self.device = device self.pos_emb = nn.Linear(pos_size, word_size) self.input_emb = nn.Linear(word_size, hidden_size) self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True) # self.linear2 = nn.Linear(hidden_size, output_size) self.input_emb.apply(init_weight) self.pos_emb.apply(init_weight) # self.linear2.apply(init_weight) # self.batch_size = batch_size self.hidden_size = hidden_size self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True)) # input(batch_size, seq_len, dim) def forward(self, word_embs, pos_onehot, cap_lens): num_samples = word_embs.shape[0] pos_embs = self.pos_emb(pos_onehot) inputs = word_embs + pos_embs input_embs = self.input_emb(inputs) hidden = self.hidden.repeat(1, num_samples, 1) cap_lens = cap_lens.data.tolist() emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True) gru_seq, gru_last = self.gru(emb, hidden) gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1) gru_seq = pad_packed_sequence(gru_seq, batch_first=True)[0] forward_seq = gru_seq[..., :self.hidden_size] backward_seq = gru_seq[..., self.hidden_size:].clone() # Concate the forward and backward word embeddings for i, length in enumerate(cap_lens): backward_seq[i:i+1, :length] = torch.flip(backward_seq[i:i+1, :length].clone(), dims=[1]) gru_seq = torch.cat([forward_seq, backward_seq], dim=-1) return gru_seq, gru_last class TextEncoderBiGRUCo(nn.Module): def __init__(self, word_size, pos_size, hidden_size, output_size, device): super(TextEncoderBiGRUCo, self).__init__() self.device = device self.pos_emb = nn.Linear(pos_size, word_size) self.input_emb = nn.Linear(word_size, hidden_size) self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True) self.output_net = nn.Sequential( nn.Linear(hidden_size * 2, hidden_size), nn.LayerNorm(hidden_size), nn.LeakyReLU(0.2, inplace=True), nn.Linear(hidden_size, output_size) ) self.input_emb.apply(init_weight) self.pos_emb.apply(init_weight) self.output_net.apply(init_weight) # self.linear2.apply(init_weight) # self.batch_size = batch_size self.hidden_size = hidden_size self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True)) # input(batch_size, seq_len, dim) def forward(self, word_embs, pos_onehot, cap_lens): num_samples = word_embs.shape[0] pos_embs = self.pos_emb(pos_onehot) inputs = word_embs + pos_embs input_embs = self.input_emb(inputs) hidden = self.hidden.repeat(1, num_samples, 1) cap_lens = cap_lens.data.tolist() emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True) gru_seq, gru_last = self.gru(emb, hidden) gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1) return self.output_net(gru_last) class MotionEncoderBiGRUCo(nn.Module): def __init__(self, input_size, hidden_size, output_size, device): super(MotionEncoderBiGRUCo, self).__init__() self.device = device self.input_emb = nn.Linear(input_size, hidden_size) self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True) self.output_net = nn.Sequential( nn.Linear(hidden_size*2, hidden_size), nn.LayerNorm(hidden_size), nn.LeakyReLU(0.2, inplace=True), nn.Linear(hidden_size, output_size) ) self.input_emb.apply(init_weight) self.output_net.apply(init_weight) self.hidden_size = hidden_size self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True)) # input(batch_size, seq_len, dim) def forward(self, inputs, m_lens): num_samples = inputs.shape[0] input_embs = self.input_emb(inputs) hidden = self.hidden.repeat(1, num_samples, 1) cap_lens = m_lens.data.tolist() emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True) gru_seq, gru_last = self.gru(emb, hidden) gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1) return self.output_net(gru_last) class MotionLenEstimatorBiGRU(nn.Module): def __init__(self, word_size, pos_size, hidden_size, output_size): super(MotionLenEstimatorBiGRU, self).__init__() self.pos_emb = nn.Linear(pos_size, word_size) self.input_emb = nn.Linear(word_size, hidden_size) self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True) nd = 512 self.output = nn.Sequential( nn.Linear(hidden_size*2, nd), nn.LayerNorm(nd), nn.LeakyReLU(0.2, inplace=True), nn.Linear(nd, nd // 2), nn.LayerNorm(nd // 2), nn.LeakyReLU(0.2, inplace=True), nn.Linear(nd // 2, nd // 4), nn.LayerNorm(nd // 4), nn.LeakyReLU(0.2, inplace=True), nn.Linear(nd // 4, output_size) ) self.input_emb.apply(init_weight) self.pos_emb.apply(init_weight) self.output.apply(init_weight) self.hidden_size = hidden_size self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True)) # input(batch_size, seq_len, dim) def forward(self, word_embs, pos_onehot, cap_lens): num_samples = word_embs.shape[0] pos_embs = self.pos_emb(pos_onehot) inputs = word_embs + pos_embs input_embs = self.input_emb(inputs) hidden = self.hidden.repeat(1, num_samples, 1) cap_lens = cap_lens.data.tolist() emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True) gru_seq, gru_last = self.gru(emb, hidden) gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1) return self.output(gru_last)