File size: 9,055 Bytes
445d3d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""Full definition of a LLaMA Language Model, all of it in this single file.

Based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT.
"""
# mypy: ignore-errors
import math
from dataclasses import dataclass

import torch
import torch.nn as nn
from torch.nn import functional as F
from typing_extensions import Self


@dataclass
class LLaMAConfig:
    block_size: int = 4096
    vocab_size: int = 32000
    n_layer: int = 32
    n_head: int = 32
    n_embd: int = 4096

    @classmethod
    def from_name(cls, name: str) -> Self:
        return cls(**llama_configs[name])


llama_configs = {
    "7B": dict(n_layer=32, n_head=32, n_embd=4096),
    "13B": dict(n_layer=40, n_head=40, n_embd=5120),
    "30B": dict(n_layer=60, n_head=52, n_embd=6656),
    "65B": dict(n_layer=80, n_head=64, n_embd=8192),
}


class LLaMA(nn.Module):
    def __init__(self, config: LLaMAConfig) -> None:
        super().__init__()
        assert config.vocab_size is not None
        assert config.block_size is not None
        self.config = config

        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.transformer = nn.ModuleDict(
            dict(
                wte=nn.Embedding(config.vocab_size, config.n_embd),
                h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
                ln_f=RMSNorm(config.n_embd),
            )
        )
        # self.llama_proj = nn.Sequential(
        #     nn.Linear(256, 1024),
        #     nn.ReLU(),
        #     nn.Linear(1024, config.n_embd)
        # )
        self.llama_proj = nn.Linear(512, config.n_embd)
        # self.motion_proj = nn.Sequential(
        #     nn.Linear(config.n_embd, 1024),
        #     nn.ReLU(),
        #     nn.Linear(1024, 256)
        # )
        self.motion_proj = nn.Linear(config.n_embd, 512)

    def _init_weights(self, module: nn.Module) -> None:
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02 / math.sqrt(2 * self.config.n_layer))
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02 / math.sqrt(2 * self.config.n_layer))

    def forward(self, idx: torch.Tensor) -> torch.Tensor:
        # import pdb; pdb.set_trace()
        _, t = idx.size()
        assert (
            t <= self.config.block_size
        ), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"

        # forward the LLaMA model itself
        x = self.transformer.wte(idx)  # token embeddings of shape (b, t, n_embd)

        for block in self.transformer.h:
            x = block(x)
        x = self.transformer.ln_f(x)

        logits = self.lm_head(x)  # (b, t, vocab_size)

        return logits

    @classmethod
    def from_name(cls, name: str) -> Self:
        return cls(LLaMAConfig.from_name(name))


class Block(nn.Module):
    def __init__(self, config: LLaMAConfig) -> None:
        super().__init__()
        self.rms_1 = RMSNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.rms_2 = RMSNorm(config.n_embd)
        self.mlp = MLP(config)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x + self.attn(self.rms_1(x))
        x = x + self.mlp(self.rms_2(x))
        return x


class CausalSelfAttention(nn.Module):
    def __init__(self, config: LLaMAConfig) -> None:
        super().__init__()
        assert config.n_embd % config.n_head == 0

        # key, query, value projections for all heads, but in a batch
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=False)
        # output projection
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=False)

        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.block_size = config.block_size
        self.rope_cache = None

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, T, C = x.size()  # batch size, sequence length, embedding dimensionality (n_embd)

        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        q, k, v = self.c_attn(x).split(self.n_embd, dim=2)

        head_size = C // self.n_head
        k = k.view(B, T, self.n_head, head_size).transpose(1, 2)  # (B, nh, T, hs)
        q = q.view(B, T, self.n_head, head_size).transpose(1, 2)  # (B, nh, T, hs)
        v = v.view(B, T, self.n_head, head_size).transpose(1, 2)  # (B, nh, T, hs)

        if self.rope_cache is None:
            # cache for future forward calls
            self.rope_cache = build_rope_cache(
                seq_len=self.block_size,
                n_elem=self.n_embd // self.n_head, 
                dtype=x.dtype,
                device=x.device,
            )

        q = apply_rope(q, self.rope_cache)
        k = apply_rope(k, self.rope_cache)

        # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
        #  att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
        #  att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
        #  att = F.softmax(att, dim=-1)
        #  y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)

        # efficient attention using Flash Attention CUDA kernels
        y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True)

        y = y.transpose(1, 2).contiguous().view(B, T, C)  # re-assemble all head outputs side by side

        # output projection
        y = self.c_proj(y)

        return y


class MLP(nn.Module):
    def __init__(self, config: LLaMAConfig) -> None:
        super().__init__()
        hidden_dim = 4 * config.n_embd
        n_hidden = int(2 * hidden_dim / 3)
        N = 256
        # ensure n_hidden is multiple of N
        n_hidden = ((n_hidden - 1) // N) * N + N

        self.c_fc1 = nn.Linear(config.n_embd, n_hidden, bias=False)
        self.c_fc2 = nn.Linear(config.n_embd, n_hidden, bias=False)
        self.c_proj = nn.Linear(n_hidden, config.n_embd, bias=False)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = F.silu(self.c_fc1(x)) * self.c_fc2(x)
        x = self.c_proj(x)
        return x


class RMSNorm(nn.Module):
    """Root Mean Square Layer Normalization.

    Derived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License:
    https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE.
    """

    def __init__(self, size: int, dim: int = -1, eps: float = 1e-5) -> None:
        super().__init__()
        self.scale = nn.Parameter(torch.ones(size))
        self.eps = eps
        self.dim = dim

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # NOTE: the original RMSNorm paper implementation is not equivalent
        # norm_x = x.norm(2, dim=self.dim, keepdim=True)
        # rms_x = norm_x * d_x ** (-1. / 2)
        # x_normed = x / (rms_x + self.eps)
        norm_x = torch.mean(x * x, dim=self.dim, keepdim=True)
        x_normed = x * torch.rsqrt(norm_x + self.eps)
        return self.scale * x_normed


def build_rope_cache(seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000) -> torch.Tensor:
    """Enhanced Transformer with Rotary Position Embedding.

    Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
    transformers/rope/__init__.py. MIT License:
    https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
    """
    # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
    theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=dtype, device=device) / n_elem))

    # Create position indexes `[0, 1, ..., seq_len - 1]`
    seq_idx = torch.arange(seq_len, dtype=dtype, device=device)

    # Calculate the product of position index and $\theta_i$
    idx_theta = torch.outer(seq_idx, theta)

    # Compute cache. Because polar only takes float32 or float64, we need to cast
    # when working with 16 bit floats (float16 or bfloat16)
    dtypes_requiring_casting = [torch.float16, torch.bfloat16, torch.int8]
    working_dtype = (
        torch.float32 if dtype in dtypes_requiring_casting else dtype
    )
    complex_dtype = (
        torch.complex32 if dtype in dtypes_requiring_casting else torch.complex64
    )
    cache = torch.polar(
        torch.ones_like(idx_theta).to(working_dtype), idx_theta.to(working_dtype)
    ).to(complex_dtype)
    return cache


def apply_rope(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
    x = x.transpose(1, 2)

    # truncate to support variable sizes
    T = x.size(1)
    rope_cache = rope_cache[:T]

    # cast because `view_as_complex` does not support 16 bit tensors
    xc = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
    rope_cache = rope_cache.view(1, xc.size(1), 1, xc.size(3))
    x_out = torch.view_as_real(xc * rope_cache).flatten(3)
    return x_out.transpose(1, 2).type_as(x)