AudioWatermarking_test / streamlit_test_space.py
Ezi's picture
Upload streamlit_test_space.py
baa733f verified
raw
history blame
4.1 kB
import time
import wavmark
import streamlit as st
import os
import torch
import datetime
import numpy as np
import soundfile
from wavmark.utils import file_reader
def my_read_file(audio_path, max_second):
signal, sr, audio_length_second = file_reader.read_as_single_channel_16k(audio_path, default_sr)
if audio_length_second > max_second:
signal = signal[0:default_sr * max_second]
audio_length_second = max_second
return signal, sr, audio_length_second
def add_watermark(audio_path, watermark_text):
#t1 = time.time()
assert len(watermark_text) == 16
watermark_npy = np.array([int(i) for i in watermark_text])
signal, sr, audio_length_second = my_read_file(audio_path, max_second_encode)
watermarked_signal, _ = wavmark.encode_watermark(model, signal, watermark_npy, show_progress=False)
tmp_file_name = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + "_" + watermark_text + ".wav"
tmp_file_path = '/tmp/' + tmp_file_name
soundfile.write(tmp_file_path, watermarked_signal, sr)
#encode_time_cost = time.time() - t1
return tmp_file_path
#def encode_water()
def decode_watermark(audio_path):
assert os.path.exists(audio_path)
#t1 = time.time()
signal, sr, audio_length_second = my_read_file(audio_path, max_second_decode)
payload_decoded, _ = wavmark.decode_watermark(model, signal, show_progress=False)
decode_cost = time.time() - t1
if payload_decoded is None:
return "No Watermark", decode_cost
payload_decoded_str = "".join([str(i) for i in payload_decoded])
st.write("Result:", payload_decoded_str)
#st.write("Time Cost:%d seconds" % (decode_cost))
def create_default_value():
if "def_value" not in st.session_state:
def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit)
def_val_str = "".join([str(i) for i in def_val_npy])
st.session_state.def_value = def_val_str
def main():
create_default_value()
# st.title("AudioWaterMarking")
markdown_text = """
# Audio WaterMarking
You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio.
See [WaveMarktoolkit](https://github.com/wavmark/wavmark) for further details.
"""
st.markdown(markdown_text)
audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False)
if audio_file:
tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
with open(tmp_input_audio_file, "wb") as f:
f.write(audio_file.getbuffer())
# st.audio(tmp_input_audio_file, format="audio/wav")
action = st.selectbox("Select Action", ["Add Watermark", "Decode Watermark"])
if action == "Add Watermark":
watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
if add_watermark_button:
if audio_file and watermark_text:
with st.spinner("Adding Watermark..."):
#watermarked_audio, encode_time_cost = add_watermark(tmp_input_audio_file, watermark_text)
watermarked_audio = add_watermark(tmp_input_audio_file, watermark_text)
st.write("Watermarked Audio:")
print("watermarked_audio:", watermarked_audio)
st.audio(watermarked_audio, format="audio/wav")
#st.write("Time Cost: %d seconds" % encode_time_cost)
elif action == "Decode Watermark":
if st.button("Decode"):
with st.spinner("Decoding..."):
decode_watermark(tmp_input_audio_file)
if __name__ == "__main__":
default_sr = 16000
max_second_encode = 60
max_second_decode = 30
len_start_bit = 16
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = wavmark.load_model().to(device)
main()