import time import streamlit as st import os import torch import datetime import numpy as np import soundfile from wavmark.utils import file_reader def my_read_file(audio_path, max_second): signal, sr, audio_length_second = file_reader.read_as_single_channel_16k(audio_path, default_sr) if audio_length_second > max_second: signal = signal[0:default_sr * max_second] audio_length_second = max_second return signal, sr, audio_length_second def add_watermark(audio_path, watermark_text): #t1 = time.time() assert len(watermark_text) == 16 watermark_npy = np.array([int(i) for i in watermark_text]) signal, sr, audio_length_second = my_read_file(audio_path, max_second_encode) watermarked_signal, _ = wavmark.encode_watermark(model, signal, watermark_npy, show_progress=False) tmp_file_name = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + "_" + watermark_text + ".wav" tmp_file_path = '/tmp/' + tmp_file_name soundfile.write(tmp_file_path, watermarked_signal, sr) #encode_time_cost = time.time() - t1 return tmp_file_path #def encode_water() def decode_watermark(audio_path): assert os.path.exists(audio_path) signal, sr, audio_length_second = my_read_file(audio_path, max_second_decode) payload_decoded, _ = wavmark.decode_watermark(model, signal, show_progress=False) decode_cost = time.time() - t1 if payload_decoded is None: return "No Watermark", decode_cost payload_decoded_str = "".join([str(i) for i in payload_decoded]) st.write("Result:", payload_decoded_str) def create_default_value(): if "def_value" not in st.session_state: def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit) def_val_str = "".join([str(i) for i in def_val_npy]) st.session_state.def_value = def_val_str def main(): create_default_value() # st.title("AudioWaterMarking") markdown_text = """ # Audio WaterMarking You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio. See [WaveMarktoolkit](https://github.com/wavmark/wavmark) for further details. """ st.markdown(markdown_text) audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False) if audio_file: tmp_input_audio_file = os.path.join("/tmp/", audio_file.name) with open(tmp_input_audio_file, "wb") as f: f.write(audio_file.getbuffer()) # st.audio(tmp_input_audio_file, format="audio/wav") action = st.selectbox("Select Action", ["Add Watermark", "Decode Watermark"]) if action == "Add Watermark": watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value) add_watermark_button = st.button("Add Watermark", key="add_watermark_btn") if add_watermark_button: if audio_file and watermark_text: with st.spinner("Adding Watermark..."): #watermarked_audio, encode_time_cost = add_watermark(tmp_input_audio_file, watermark_text) watermarked_audio = add_watermark(tmp_input_audio_file, watermark_text) st.write("Watermarked Audio:") print("watermarked_audio:", watermarked_audio) st.audio(watermarked_audio, format="audio/wav") #st.write("Time Cost: %d seconds" % encode_time_cost) elif action == "Decode Watermark": if st.button("Decode"): with st.spinner("Decoding..."): decode_watermark(tmp_input_audio_file) if __name__ == "__main__": default_sr = 16000 max_second_encode = 60 max_second_decode = 30 len_start_bit = 16 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') model = wavmark.load_model().to(device) main()