Wisdom882's picture
Create app.py
0262910
raw
history blame contribute delete
672 Bytes
import streamlit as st
from transformers import pipeline
from transformers import BeitFeatureExtractor, BeitForImageClassification
from PIL import Image
import requests
pipeline = pipeline(task = "image-classification", model = "microsoft/beit-base-patch16-224-pt22k-ft22k")
st.title("Predict the class of an image")
file_name = st.file_uploader("Upload an image here")
if file_name is not None:
col1, col2 = st.columns(2)
image = Image.open(file_name)
col1.image(image, use_column_width=True)
predictions = pipeline(image)
col2.header("Probabilities")
for p in predictions:
col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")