import streamlit as st from transformers import pipeline from transformers import BeitFeatureExtractor, BeitForImageClassification from PIL import Image import requests pipeline = pipeline(task = "image-classification", model = "microsoft/beit-base-patch16-224-pt22k-ft22k") st.title("Predict the class of an image") file_name = st.file_uploader("Upload an image here") if file_name is not None: col1, col2 = st.columns(2) image = Image.open(file_name) col1.image(image, use_column_width=True) predictions = pipeline(image) col2.header("Probabilities") for p in predictions: col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")