File size: 37,687 Bytes
ffead1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import os
import tempfile
import unittest

import torch
from parameterized import parameterized

from diffusers import UNet2DConditionModel
from diffusers.models.attention_processor import LoRAAttnProcessor
from diffusers.utils import (
    floats_tensor,
    load_hf_numpy,
    logging,
    require_torch_gpu,
    slow,
    torch_all_close,
    torch_device,
)
from diffusers.utils.import_utils import is_xformers_available

from ..test_modeling_common import ModelTesterMixin


logger = logging.get_logger(__name__)
torch.backends.cuda.matmul.allow_tf32 = False


def create_lora_layers(model):
    lora_attn_procs = {}
    for name in model.attn_processors.keys():
        cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
        if name.startswith("mid_block"):
            hidden_size = model.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(model.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = model.config.block_out_channels[block_id]

        lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
        lora_attn_procs[name] = lora_attn_procs[name].to(model.device)

        # add 1 to weights to mock trained weights
        with torch.no_grad():
            lora_attn_procs[name].to_q_lora.up.weight += 1
            lora_attn_procs[name].to_k_lora.up.weight += 1
            lora_attn_procs[name].to_v_lora.up.weight += 1
            lora_attn_procs[name].to_out_lora.up.weight += 1

    return lora_attn_procs


class UNet2DConditionModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNet2DConditionModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)
        encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device)

        return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states}

    @property
    def input_shape(self):
        return (4, 32, 32)

    @property
    def output_shape(self):
        return (4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": (32, 64),
            "down_block_types": ("CrossAttnDownBlock2D", "DownBlock2D"),
            "up_block_types": ("UpBlock2D", "CrossAttnUpBlock2D"),
            "cross_attention_dim": 32,
            "attention_head_dim": 8,
            "out_channels": 4,
            "in_channels": 4,
            "layers_per_block": 2,
            "sample_size": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_enable_works(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        model.enable_xformers_memory_efficient_attention()

        assert (
            model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__
            == "XFormersAttnProcessor"
        ), "xformers is not enabled"

    @unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS")
    def test_gradient_checkpointing(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)

        assert not model.is_gradient_checkpointing and model.training

        out = model(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model.zero_grad()

        labels = torch.randn_like(out)
        loss = (out - labels).mean()
        loss.backward()

        # re-instantiate the model now enabling gradient checkpointing
        model_2 = self.model_class(**init_dict)
        # clone model
        model_2.load_state_dict(model.state_dict())
        model_2.to(torch_device)
        model_2.enable_gradient_checkpointing()

        assert model_2.is_gradient_checkpointing and model_2.training

        out_2 = model_2(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model_2.zero_grad()
        loss_2 = (out_2 - labels).mean()
        loss_2.backward()

        # compare the output and parameters gradients
        self.assertTrue((loss - loss_2).abs() < 1e-5)
        named_params = dict(model.named_parameters())
        named_params_2 = dict(model_2.named_parameters())
        for name, param in named_params.items():
            self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5))

    def test_model_with_attention_head_dim_tuple(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.sample

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

    def test_model_with_use_linear_projection(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["use_linear_projection"] = True

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.sample

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

    def test_model_with_cross_attention_dim_tuple(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["cross_attention_dim"] = (32, 32)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.sample

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

    def test_model_with_simple_projection(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        batch_size, _, _, sample_size = inputs_dict["sample"].shape

        init_dict["class_embed_type"] = "simple_projection"
        init_dict["projection_class_embeddings_input_dim"] = sample_size

        inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.sample

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

    def test_model_with_class_embeddings_concat(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        batch_size, _, _, sample_size = inputs_dict["sample"].shape

        init_dict["class_embed_type"] = "simple_projection"
        init_dict["projection_class_embeddings_input_dim"] = sample_size
        init_dict["class_embeddings_concat"] = True

        inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.sample

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

    def test_model_attention_slicing(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        model.set_attention_slice("auto")
        with torch.no_grad():
            output = model(**inputs_dict)
        assert output is not None

        model.set_attention_slice("max")
        with torch.no_grad():
            output = model(**inputs_dict)
        assert output is not None

        model.set_attention_slice(2)
        with torch.no_grad():
            output = model(**inputs_dict)
        assert output is not None

    def test_model_sliceable_head_dim(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)

        def check_sliceable_dim_attr(module: torch.nn.Module):
            if hasattr(module, "set_attention_slice"):
                assert isinstance(module.sliceable_head_dim, int)

            for child in module.children():
                check_sliceable_dim_attr(child)

        # retrieve number of attention layers
        for module in model.children():
            check_sliceable_dim_attr(module)

    def test_special_attn_proc(self):
        class AttnEasyProc(torch.nn.Module):
            def __init__(self, num):
                super().__init__()
                self.weight = torch.nn.Parameter(torch.tensor(num))
                self.is_run = False
                self.number = 0
                self.counter = 0

            def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, number=None):
                batch_size, sequence_length, _ = hidden_states.shape
                attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

                query = attn.to_q(hidden_states)

                encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
                key = attn.to_k(encoder_hidden_states)
                value = attn.to_v(encoder_hidden_states)

                query = attn.head_to_batch_dim(query)
                key = attn.head_to_batch_dim(key)
                value = attn.head_to_batch_dim(value)

                attention_probs = attn.get_attention_scores(query, key, attention_mask)
                hidden_states = torch.bmm(attention_probs, value)
                hidden_states = attn.batch_to_head_dim(hidden_states)

                # linear proj
                hidden_states = attn.to_out[0](hidden_states)
                # dropout
                hidden_states = attn.to_out[1](hidden_states)

                hidden_states += self.weight

                self.is_run = True
                self.counter += 1
                self.number = number

                return hidden_states

        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)
        model.to(torch_device)

        processor = AttnEasyProc(5.0)

        model.set_attn_processor(processor)
        model(**inputs_dict, cross_attention_kwargs={"number": 123}).sample

        assert processor.counter == 12
        assert processor.is_run
        assert processor.number == 123

    def test_lora_processors(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)
        model.to(torch_device)

        with torch.no_grad():
            sample1 = model(**inputs_dict).sample

        lora_attn_procs = {}
        for name in model.attn_processors.keys():
            cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
            if name.startswith("mid_block"):
                hidden_size = model.config.block_out_channels[-1]
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                hidden_size = list(reversed(model.config.block_out_channels))[block_id]
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                hidden_size = model.config.block_out_channels[block_id]

            lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)

            # add 1 to weights to mock trained weights
            with torch.no_grad():
                lora_attn_procs[name].to_q_lora.up.weight += 1
                lora_attn_procs[name].to_k_lora.up.weight += 1
                lora_attn_procs[name].to_v_lora.up.weight += 1
                lora_attn_procs[name].to_out_lora.up.weight += 1

        # make sure we can set a list of attention processors
        model.set_attn_processor(lora_attn_procs)
        model.to(torch_device)

        # test that attn processors can be set to itself
        model.set_attn_processor(model.attn_processors)

        with torch.no_grad():
            sample2 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample
            sample3 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
            sample4 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample

        assert (sample1 - sample2).abs().max() < 1e-4
        assert (sample3 - sample4).abs().max() < 1e-4

        # sample 2 and sample 3 should be different
        assert (sample2 - sample3).abs().max() > 1e-4

    def test_lora_save_load(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["attention_head_dim"] = (8, 16)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)

        with torch.no_grad():
            old_sample = model(**inputs_dict).sample

        lora_attn_procs = create_lora_layers(model)
        model.set_attn_processor(lora_attn_procs)

        with torch.no_grad():
            sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_attn_procs(tmpdirname)
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            torch.manual_seed(0)
            new_model = self.model_class(**init_dict)
            new_model.to(torch_device)
            new_model.load_attn_procs(tmpdirname)

        with torch.no_grad():
            new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample

        assert (sample - new_sample).abs().max() < 1e-4

        # LoRA and no LoRA should NOT be the same
        assert (sample - old_sample).abs().max() > 1e-4

    def test_lora_save_load_safetensors(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["attention_head_dim"] = (8, 16)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)

        with torch.no_grad():
            old_sample = model(**inputs_dict).sample

        lora_attn_procs = {}
        for name in model.attn_processors.keys():
            cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
            if name.startswith("mid_block"):
                hidden_size = model.config.block_out_channels[-1]
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                hidden_size = list(reversed(model.config.block_out_channels))[block_id]
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                hidden_size = model.config.block_out_channels[block_id]

            lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
            lora_attn_procs[name] = lora_attn_procs[name].to(model.device)

            # add 1 to weights to mock trained weights
            with torch.no_grad():
                lora_attn_procs[name].to_q_lora.up.weight += 1
                lora_attn_procs[name].to_k_lora.up.weight += 1
                lora_attn_procs[name].to_v_lora.up.weight += 1
                lora_attn_procs[name].to_out_lora.up.weight += 1

        model.set_attn_processor(lora_attn_procs)

        with torch.no_grad():
            sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_attn_procs(tmpdirname, safe_serialization=True)
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            torch.manual_seed(0)
            new_model = self.model_class(**init_dict)
            new_model.to(torch_device)
            new_model.load_attn_procs(tmpdirname)

        with torch.no_grad():
            new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample

        assert (sample - new_sample).abs().max() < 1e-4

        # LoRA and no LoRA should NOT be the same
        assert (sample - old_sample).abs().max() > 1e-4

    def test_lora_save_safetensors_load_torch(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["attention_head_dim"] = (8, 16)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)

        lora_attn_procs = {}
        for name in model.attn_processors.keys():
            cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
            if name.startswith("mid_block"):
                hidden_size = model.config.block_out_channels[-1]
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                hidden_size = list(reversed(model.config.block_out_channels))[block_id]
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                hidden_size = model.config.block_out_channels[block_id]

            lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
            lora_attn_procs[name] = lora_attn_procs[name].to(model.device)

        model.set_attn_processor(lora_attn_procs)
        # Saving as torch, properly reloads with directly filename
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_attn_procs(tmpdirname)
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            torch.manual_seed(0)
            new_model = self.model_class(**init_dict)
            new_model.to(torch_device)
            new_model.load_attn_procs(tmpdirname, weight_name="pytorch_lora_weights.bin")

    def test_lora_save_torch_force_load_safetensors_error(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["attention_head_dim"] = (8, 16)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)

        lora_attn_procs = {}
        for name in model.attn_processors.keys():
            cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
            if name.startswith("mid_block"):
                hidden_size = model.config.block_out_channels[-1]
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                hidden_size = list(reversed(model.config.block_out_channels))[block_id]
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                hidden_size = model.config.block_out_channels[block_id]

            lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
            lora_attn_procs[name] = lora_attn_procs[name].to(model.device)

        model.set_attn_processor(lora_attn_procs)
        # Saving as torch, properly reloads with directly filename
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_attn_procs(tmpdirname)
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            torch.manual_seed(0)
            new_model = self.model_class(**init_dict)
            new_model.to(torch_device)
            with self.assertRaises(IOError) as e:
                new_model.load_attn_procs(tmpdirname, use_safetensors=True)
            self.assertIn("Error no file named pytorch_lora_weights.safetensors", str(e.exception))

    def test_lora_on_off(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["attention_head_dim"] = (8, 16)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)

        with torch.no_grad():
            old_sample = model(**inputs_dict).sample

        lora_attn_procs = create_lora_layers(model)
        model.set_attn_processor(lora_attn_procs)

        with torch.no_grad():
            sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample

        model.set_default_attn_processor()

        with torch.no_grad():
            new_sample = model(**inputs_dict).sample

        assert (sample - new_sample).abs().max() < 1e-4
        assert (sample - old_sample).abs().max() < 1e-4

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_lora_xformers_on_off(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["attention_head_dim"] = (8, 16)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)
        lora_attn_procs = create_lora_layers(model)
        model.set_attn_processor(lora_attn_procs)

        # default
        with torch.no_grad():
            sample = model(**inputs_dict).sample

            model.enable_xformers_memory_efficient_attention()
            on_sample = model(**inputs_dict).sample

            model.disable_xformers_memory_efficient_attention()
            off_sample = model(**inputs_dict).sample

        assert (sample - on_sample).abs().max() < 1e-4
        assert (sample - off_sample).abs().max() < 1e-4


@slow
class UNet2DConditionModelIntegrationTests(unittest.TestCase):
    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
        return image

    def get_unet_model(self, fp16=False, model_id="CompVis/stable-diffusion-v1-4"):
        revision = "fp16" if fp16 else None
        torch_dtype = torch.float16 if fp16 else torch.float32

        model = UNet2DConditionModel.from_pretrained(
            model_id, subfolder="unet", torch_dtype=torch_dtype, revision=revision
        )
        model.to(torch_device).eval()

        return model

    def test_set_attention_slice_auto(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        unet = self.get_unet_model()
        unet.set_attention_slice("auto")

        latents = self.get_latents(33)
        encoder_hidden_states = self.get_encoder_hidden_states(33)
        timestep = 1

        with torch.no_grad():
            _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        mem_bytes = torch.cuda.max_memory_allocated()

        assert mem_bytes < 5 * 10**9

    def test_set_attention_slice_max(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        unet = self.get_unet_model()
        unet.set_attention_slice("max")

        latents = self.get_latents(33)
        encoder_hidden_states = self.get_encoder_hidden_states(33)
        timestep = 1

        with torch.no_grad():
            _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        mem_bytes = torch.cuda.max_memory_allocated()

        assert mem_bytes < 5 * 10**9

    def test_set_attention_slice_int(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        unet = self.get_unet_model()
        unet.set_attention_slice(2)

        latents = self.get_latents(33)
        encoder_hidden_states = self.get_encoder_hidden_states(33)
        timestep = 1

        with torch.no_grad():
            _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        mem_bytes = torch.cuda.max_memory_allocated()

        assert mem_bytes < 5 * 10**9

    def test_set_attention_slice_list(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        # there are 32 sliceable layers
        slice_list = 16 * [2, 3]
        unet = self.get_unet_model()
        unet.set_attention_slice(slice_list)

        latents = self.get_latents(33)
        encoder_hidden_states = self.get_encoder_hidden_states(33)
        timestep = 1

        with torch.no_grad():
            _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        mem_bytes = torch.cuda.max_memory_allocated()

        assert mem_bytes < 5 * 10**9

    def get_encoder_hidden_states(self, seed=0, shape=(4, 77, 768), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        hidden_states = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
        return hidden_states

    @parameterized.expand(
        [
            # fmt: off
            [33, 4, [-0.4424, 0.1510, -0.1937, 0.2118, 0.3746, -0.3957, 0.0160, -0.0435]],
            [47, 0.55, [-0.1508, 0.0379, -0.3075, 0.2540, 0.3633, -0.0821, 0.1719, -0.0207]],
            [21, 0.89, [-0.6479, 0.6364, -0.3464, 0.8697, 0.4443, -0.6289, -0.0091, 0.1778]],
            [9, 1000, [0.8888, -0.5659, 0.5834, -0.7469, 1.1912, -0.3923, 1.1241, -0.4424]],
            # fmt: on
        ]
    )
    @require_torch_gpu
    def test_compvis_sd_v1_4(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4")
        latents = self.get_latents(seed)
        encoder_hidden_states = self.get_encoder_hidden_states(seed)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == latents.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)

    @parameterized.expand(
        [
            # fmt: off
            [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]],
            [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]],
            [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]],
            [3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]],
            # fmt: on
        ]
    )
    @require_torch_gpu
    def test_compvis_sd_v1_4_fp16(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4", fp16=True)
        latents = self.get_latents(seed, fp16=True)
        encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == latents.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)

    @parameterized.expand(
        [
            # fmt: off
            [33, 4, [-0.4430, 0.1570, -0.1867, 0.2376, 0.3205, -0.3681, 0.0525, -0.0722]],
            [47, 0.55, [-0.1415, 0.0129, -0.3136, 0.2257, 0.3430, -0.0536, 0.2114, -0.0436]],
            [21, 0.89, [-0.7091, 0.6664, -0.3643, 0.9032, 0.4499, -0.6541, 0.0139, 0.1750]],
            [9, 1000, [0.8878, -0.5659, 0.5844, -0.7442, 1.1883, -0.3927, 1.1192, -0.4423]],
            # fmt: on
        ]
    )
    @require_torch_gpu
    def test_compvis_sd_v1_5(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5")
        latents = self.get_latents(seed)
        encoder_hidden_states = self.get_encoder_hidden_states(seed)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == latents.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)

    @parameterized.expand(
        [
            # fmt: off
            [83, 4, [-0.2695, -0.1669, 0.0073, -0.3181, -0.1187, -0.1676, -0.1395, -0.5972]],
            [17, 0.55, [-0.1290, -0.2588, 0.0551, -0.0916, 0.3286, 0.0238, -0.3669, 0.0322]],
            [8, 0.89, [-0.5283, 0.1198, 0.0870, -0.1141, 0.9189, -0.0150, 0.5474, 0.4319]],
            [3, 1000, [-0.5601, 0.2411, -0.5435, 0.1268, 1.1338, -0.2427, -0.0280, -1.0020]],
            # fmt: on
        ]
    )
    @require_torch_gpu
    def test_compvis_sd_v1_5_fp16(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5", fp16=True)
        latents = self.get_latents(seed, fp16=True)
        encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == latents.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)

    @parameterized.expand(
        [
            # fmt: off
            [33, 4, [-0.7639, 0.0106, -0.1615, -0.3487, -0.0423, -0.7972, 0.0085, -0.4858]],
            [47, 0.55, [-0.6564, 0.0795, -1.9026, -0.6258, 1.8235, 1.2056, 1.2169, 0.9073]],
            [21, 0.89, [0.0327, 0.4399, -0.6358, 0.3417, 0.4120, -0.5621, -0.0397, -1.0430]],
            [9, 1000, [0.1600, 0.7303, -1.0556, -0.3515, -0.7440, -1.2037, -1.8149, -1.8931]],
            # fmt: on
        ]
    )
    @require_torch_gpu
    def test_compvis_sd_inpaint(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting")
        latents = self.get_latents(seed, shape=(4, 9, 64, 64))
        encoder_hidden_states = self.get_encoder_hidden_states(seed)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == (4, 4, 64, 64)

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)

    @parameterized.expand(
        [
            # fmt: off
            [83, 4, [-0.1047, -1.7227, 0.1067, 0.0164, -0.5698, -0.4172, -0.1388, 1.1387]],
            [17, 0.55, [0.0975, -0.2856, -0.3508, -0.4600, 0.3376, 0.2930, -0.2747, -0.7026]],
            [8, 0.89, [-0.0952, 0.0183, -0.5825, -0.1981, 0.1131, 0.4668, -0.0395, -0.3486]],
            [3, 1000, [0.4790, 0.4949, -1.0732, -0.7158, 0.7959, -0.9478, 0.1105, -0.9741]],
            # fmt: on
        ]
    )
    @require_torch_gpu
    def test_compvis_sd_inpaint_fp16(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting", fp16=True)
        latents = self.get_latents(seed, shape=(4, 9, 64, 64), fp16=True)
        encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == (4, 4, 64, 64)

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)

    @parameterized.expand(
        [
            # fmt: off
            [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]],
            [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]],
            [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]],
            [3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]],
            # fmt: on
        ]
    )
    @require_torch_gpu
    def test_stabilityai_sd_v2_fp16(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="stabilityai/stable-diffusion-2", fp16=True)
        latents = self.get_latents(seed, shape=(4, 4, 96, 96), fp16=True)
        encoder_hidden_states = self.get_encoder_hidden_states(seed, shape=(4, 77, 1024), fp16=True)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == latents.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)