File size: 7,350 Bytes
ffead1e
 
 
 
559b00c
 
ffead1e
 
 
 
 
 
559b00c
 
 
 
 
 
 
 
ffead1e
 
559b00c
ffead1e
559b00c
ffead1e
 
 
 
 
 
 
 
 
559b00c
 
 
ffead1e
 
 
 
 
 
 
 
 
 
 
559b00c
ffead1e
 
 
 
 
 
559b00c
 
ffead1e
559b00c
ffead1e
 
 
 
559b00c
 
ffead1e
 
559b00c
ffead1e
559b00c
ffead1e
 
 
 
 
559b00c
ffead1e
 
a258601
559b00c
 
 
 
a117171
559b00c
ffead1e
 
 
 
559b00c
ffead1e
 
 
0353aff
559b00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffead1e
559b00c
 
 
 
ffead1e
 
 
559b00c
 
 
 
 
 
 
c0683f9
 
 
 
 
 
 
ffead1e
 
c0683f9
ffead1e
c0683f9
ffead1e
 
 
c0683f9
ffead1e
 
 
 
 
 
 
 
559b00c
ffead1e
 
 
b76c2d1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr
import json
import torch
import wavio
import spaces

from tqdm import tqdm
from huggingface_hub import snapshot_download
from models import AudioDiffusion, DDPMScheduler
from audioldm.audio.stft import TacotronSTFT
from audioldm.variational_autoencoder import AutoencoderKL
from gradio import Markdown

# Automatic device detection
if torch.cuda.is_available():
    device_type = "cuda"
    device_selection = "cuda:0"
else:
    device_type = "cpu"
    device_selection = "cpu"

class Tango:
    def __init__(self, name = "declare-lab/tango2", device = device_selection):
        
        path = snapshot_download(repo_id = name)
        
        vae_config = json.load(open("{}/vae_config.json".format(path)))
        stft_config = json.load(open("{}/stft_config.json".format(path)))
        main_config = json.load(open("{}/main_config.json".format(path)))
        
        self.vae = AutoencoderKL(**vae_config).to(device)
        self.stft = TacotronSTFT(**stft_config).to(device)
        self.model = AudioDiffusion(**main_config).to(device)
        
        vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location = device)
        stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location = device)
        main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location = device)
        
        self.vae.load_state_dict(vae_weights)
        self.stft.load_state_dict(stft_weights)
        self.model.load_state_dict(main_weights)

        print ("Successfully loaded checkpoint from:", name)
        
        self.vae.eval()
        self.stft.eval()
        self.model.eval()
        
        self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder = "scheduler")
        
    def chunks(self, lst, n):
        """ Yield successive n-sized chunks from a list. """
        for i in range(0, len(lst), n):
            yield lst[i:i + n]
        
    def generate(self, prompt, steps = 100, guidance = 3, samples = 1, disable_progress = True):
        """ Generate audio for a single prompt string. """
        with torch.no_grad():
            latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress = disable_progress)
            mel = self.vae.decode_first_stage(latents)
            wave = self.vae.decode_to_waveform(mel)
        return wave[0]
    
    def generate_for_batch(self, prompts, steps = 200, guidance = 3, samples = 1, batch_size = 8, disable_progress = True):
        """ Generate audio for a list of prompt strings. """
        outputs = []
        for k in tqdm(range(0, len(prompts), batch_size)):
            batch = prompts[k: k + batch_size]
            with torch.no_grad():
                latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress = disable_progress)
                mel = self.vae.decode_first_stage(latents)
                wave = self.vae.decode_to_waveform(mel)
                outputs += [item for item in wave]
        if samples == 1:
            return outputs
        return list(self.chunks(outputs, samples))

# Initialize TANGO

tango = Tango(device = "cpu")
tango.vae.to(device_type)
tango.stft.to(device_type)
tango.model.to(device_type)
    
@spaces.GPU(duration = 60)
def gradio_generate(prompt, steps, guidance):
    output_wave = tango.generate(prompt, steps, guidance)
    # output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav"
    output_filename = "temp.wav"
    wavio.write(output_filename, output_wave, rate = 16000, sampwidth = 2)
    
    return output_filename

description_text = """
        <p style="text-align: center;">
        <b><big><big><big>Text-to-Audio</big></big></big></b>
        <br/>Generates an audio file, freely, without account, without watermark, that you can download.
        </p>
        <br/>
        <br/>
        πŸš€ Powered by <i>Tango 2</i> AI.
        <br/>
        <ul>
        <li>If you need to generate <b>music</b>, I recommend you to use <i>MusicGen</i>,</li>
        </ul>
        <br/>
        🐌 Slow process... Your computer must <b><u>not</u></b> enter into standby mode.<br/>You can duplicate this space on a free account, it works on CPU.<br/>
        <a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Text-to-Audio?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
        <br/>
        βš–οΈ You can use, modify and share the generated sounds but not for commercial uses.
        """
# Gradio input and output components
input_text = gr.Textbox(label = "Prompt", value = "Snort of a horse", lines = 2, autofocus = True)
output_audio = gr.Audio(label = "Generated Audio", type = "filepath")
denoising_steps = gr.Slider(label = "Steps", minimum = 100, maximum = 200, value = 100, step = 1, interactive = True)
guidance_scale = gr.Slider(label = "Guidance Scale", minimum = 1, maximum = 10, value = 3, step = 0.1, interactive = True)

# Gradio interface
gr_interface = gr.Interface(
    fn = gradio_generate,
    inputs = [input_text, denoising_steps, guidance_scale],
    outputs = [output_audio],
    title = "",
    description = description_text,
    allow_flagging = False,
    examples = [
        ["Quiet speech and then and airplane flying away"],
        ["A bicycle peddling on dirt and gravel followed by a man speaking then laughing"],
        ["Ducks quack and water splashes with some animal screeching in the background"],
        ["Describe the sound of the ocean"],
        ["A woman and a baby are having a conversation"],
        ["A man speaks followed by a popping noise and laughter"],
        ["A cup is filled from a faucet"],
        ["An audience cheering and clapping"],
        ["Rolling thunder with lightning strikes"],
        ["A dog barking and a cat mewing and a racing car passes by"],
        ["Gentle water stream, birds chirping and sudden gun shot"],
        ["A man talking followed by a goat baaing then a metal gate sliding shut as ducks quack and wind blows into a microphone."],
        ["A dog barking"],
        ["A cat meowing"],
        ["Wooden table tapping sound while water pouring"],
        ["Applause from a crowd with distant clicking and a man speaking over a loudspeaker"],
        ["two gunshots followed by birds flying away while chirping"],
        ["Whistling with birds chirping"],
        ["A person snoring"],
        ["Motor vehicles are driving with loud engines and a person whistles"],
        ["People cheering in a stadium while thunder and lightning strikes"],
        ["A helicopter is in flight"],
        ["A dog barking and a man talking and a racing car passes by"],
    ],
    cache_examples = "lazy", # Turn on to cache.
)

# Launch Gradio app
gr_interface.queue(10).launch()