Spaces:
Runtime error
Runtime error
import gradio as gr | |
import json | |
import torch | |
import time | |
import random | |
from tqdm import tqdm | |
from huggingface_hub import snapshot_download | |
from models import AudioDiffusion, DDPMScheduler | |
from audioldm.audio.stft import TacotronSTFT | |
from audioldm.variational_autoencoder import AutoencoderKL | |
from pydub import AudioSegment | |
max_64_bit_int = 2**63 - 1 | |
# Automatic device detection | |
if torch.cuda.is_available(): | |
device_type = "cuda" | |
device_selection = "cuda:0" | |
else: | |
device_type = "cpu" | |
device_selection = "cpu" | |
class Tango: | |
def __init__(self, name = "declare-lab/tango2", device = device_selection): | |
path = snapshot_download(repo_id = name) | |
vae_config = json.load(open("{}/vae_config.json".format(path))) | |
stft_config = json.load(open("{}/stft_config.json".format(path))) | |
main_config = json.load(open("{}/main_config.json".format(path))) | |
self.vae = AutoencoderKL(**vae_config).to(device) | |
self.stft = TacotronSTFT(**stft_config).to(device) | |
self.model = AudioDiffusion(**main_config).to(device) | |
vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location = device) | |
stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location = device) | |
main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location = device) | |
self.vae.load_state_dict(vae_weights) | |
self.stft.load_state_dict(stft_weights) | |
self.model.load_state_dict(main_weights) | |
print ("Successfully loaded checkpoint from:", name) | |
self.vae.eval() | |
self.stft.eval() | |
self.model.eval() | |
self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder = "scheduler") | |
def chunks(self, lst, n): | |
# Yield successive n-sized chunks from a list | |
for i in range(0, len(lst), n): | |
yield lst[i:i + n] | |
def generate(self, prompt, steps = 100, guidance = 3, samples = 1, disable_progress = True): | |
# Generate audio for a single prompt string | |
with torch.no_grad(): | |
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress = disable_progress) | |
mel = self.vae.decode_first_stage(latents) | |
wave = self.vae.decode_to_waveform(mel) | |
return wave | |
def generate_for_batch(self, prompts, steps = 200, guidance = 3, samples = 1, batch_size = 8, disable_progress = True): | |
# Generate audio for a list of prompt strings | |
outputs = [] | |
for k in tqdm(range(0, len(prompts), batch_size)): | |
batch = prompts[k: k + batch_size] | |
with torch.no_grad(): | |
latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress = disable_progress) | |
mel = self.vae.decode_first_stage(latents) | |
wave = self.vae.decode_to_waveform(mel) | |
outputs += [item for item in wave] | |
if samples == 1: | |
return outputs | |
return list(self.chunks(outputs, samples)) | |
# Initialize TANGO | |
tango = Tango(device = "cpu") | |
tango.vae.to(device_type) | |
tango.stft.to(device_type) | |
tango.model.to(device_type) | |
def update_seed(is_randomize_seed, seed): | |
if is_randomize_seed: | |
return random.randint(0, max_64_bit_int) | |
return seed | |
def check( | |
prompt, | |
output_number, | |
steps, | |
guidance, | |
is_randomize_seed, | |
seed | |
): | |
if prompt is None or prompt == "": | |
raise gr.Error("Please provide a prompt input.") | |
if not output_number in [1, 2, 3]: | |
raise gr.Error("Please ask for 1, 2 or 3 output files.") | |
def update_output(output_format, output_number): | |
return [ | |
gr.update(format = output_format), | |
gr.update(format = output_format, visible = (2 <= output_number)), | |
gr.update(format = output_format, visible = (output_number == 3)), | |
gr.update(visible = False) | |
] | |
def text2audio( | |
prompt, | |
output_number, | |
steps, | |
guidance, | |
is_randomize_seed, | |
seed | |
): | |
start = time.time() | |
if seed is None: | |
seed = random.randint(0, max_64_bit_int) | |
random.seed(seed) | |
torch.manual_seed(seed) | |
output_wave = tango.generate(prompt, steps, guidance, output_number) | |
output_wave_1 = gr.make_waveform((16000, output_wave[0])) | |
output_wave_2 = gr.make_waveform((16000, output_wave[1])) if (2 <= output_number) else None | |
output_wave_3 = gr.make_waveform((16000, output_wave[2])) if (output_number == 3) else None | |
end = time.time() | |
secondes = int(end - start) | |
minutes = secondes // 60 | |
secondes = secondes - (minutes * 60) | |
hours = minutes // 60 | |
minutes = minutes - (hours * 60) | |
return [ | |
output_wave_1, | |
output_wave_2, | |
output_wave_3, | |
gr.update(visible = True, value = "Start again to get a different result. The output have been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec.") | |
] | |
# Gradio interface | |
with gr.Blocks() as interface: | |
gr.Markdown(""" | |
<p style="text-align: center;"> | |
<b><big><big><big>Text-to-Audio</big></big></big></b> | |
<br/>Generates 10 seconds of sound effects from description, freely, without account, without watermark. | |
</p> | |
<br/> | |
<br/> | |
β¨ Powered by <i>Tango 2</i> AI. | |
<br/> | |
<ul> | |
<li>If you need to generate <b>music</b>, I recommend to use <i>MusicGen</i>,</li> | |
</ul> | |
<br/> | |
π Slow process... ~5 min. Your computer must <b><u>not</u></b> enter into standby mode.<br/>You can duplicate this space on a free account, it works on CPU.<br/> | |
<a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Text-to-Audio?duplicate=true&hidden=public&hidden=public'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a> | |
<br/> | |
βοΈ You can use, modify and share the generated sounds but not for commercial uses. | |
""" | |
) | |
input_text = gr.Textbox(label = "Prompt", value = "Snort of a horse", lines = 2, autofocus = True) | |
with gr.Accordion("Advanced options", open = False): | |
output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = ["mp3", "wav"], value = "wav") | |
output_number = gr.Slider(label = "Number of generations", info = "1, 2 or 3 output files", minimum = 1, maximum = 3, value = 1, step = 1, interactive = True) | |
denoising_steps = gr.Slider(label = "Steps", info = "lower=faster & variant, higher=audio quality & similar", minimum = 10, maximum = 200, value = 10, step = 1, interactive = True) | |
guidance_scale = gr.Slider(label = "Guidance Scale", info = "lower=audio quality, higher=follow the prompt", minimum = 1, maximum = 10, value = 3, step = 0.1, interactive = True) | |
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different") | |
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed") | |
submit = gr.Button("π Generate", variant = "primary") | |
output_audio_1 = gr.Audio(label = "Generated Audio #1/3", format = "wav", type="numpy", autoplay = True) | |
output_audio_2 = gr.Audio(label = "Generated Audio #2/3", format = "wav", type="numpy") | |
output_audio_3 = gr.Audio(label = "Generated Audio #3/3", format = "wav", type="numpy") | |
information = gr.Label(label = "Information") | |
submit.click(fn = update_seed, inputs = [ | |
randomize_seed, | |
seed | |
], outputs = [ | |
seed | |
], queue = False, show_progress = False).then(fn = check, inputs = [ | |
input_text, | |
output_number, | |
denoising_steps, | |
guidance_scale, | |
randomize_seed, | |
seed | |
], outputs = [], queue = False, show_progress = False).success(fn = update_output, inputs = [ | |
output_format, | |
output_number | |
], outputs = [ | |
output_audio_1, | |
output_audio_2, | |
output_audio_3, | |
information | |
], queue = False, show_progress = False).success(fn = text2audio, inputs = [ | |
input_text, | |
output_number, | |
denoising_steps, | |
guidance_scale, | |
randomize_seed, | |
seed | |
], outputs = [ | |
output_audio_1, | |
output_audio_2, | |
output_audio_3, | |
information | |
], scroll_to_output = True) | |
gr.Examples( | |
fn = text2audio, | |
inputs = [ | |
input_text, | |
output_number, | |
denoising_steps, | |
guidance_scale, | |
randomize_seed, | |
seed | |
], | |
outputs = [ | |
output_audio_1, | |
output_audio_2, | |
output_audio_3, | |
information | |
], | |
examples = [ | |
["A hammer is hitting a wooden surface", 3, 100, 3, False, 123], | |
["Peaceful and calming ambient music with singing bowl and other instruments.", 3, 100, 3, False, 123], | |
["A man is speaking in a small room.", 2, 100, 3, False, 123], | |
["A female is speaking followed by footstep sound", 1, 100, 3, False, 123], | |
["Wooden table tapping sound followed by water pouring sound.", 3, 200, 3, False, 123], | |
], | |
cache_examples = "lazy", | |
) | |
gr.Markdown( | |
""" | |
## How to prompt your sound | |
You can use round brackets to increase the importance of a part: | |
``` | |
Peaceful and (calming) ambient music with singing bowl and other instruments | |
``` | |
You can use several levels of round brackets to even more increase the importance of a part: | |
``` | |
(Peaceful) and ((calming)) ambient music with singing bowl and other instruments | |
``` | |
You can use number instead of several round brackets: | |
``` | |
(Peaceful:1.5) and ((calming)) ambient music with singing bowl and other instruments | |
``` | |
You can do the same thing with square brackets to decrease the importance of a part: | |
``` | |
(Peaceful:1.5) and ((calming)) ambient music with [singing:2] bowl and other instruments | |
""" | |
) | |
interface.queue(10).launch() |