for-pinokio / app.py
Fabrice-TIERCELIN's picture
From prod
70a8aa2 verified
raw
history blame
10.9 kB
import gradio as gr
import json
import torch
import time
import random
from tqdm import tqdm
from huggingface_hub import snapshot_download
from models import AudioDiffusion, DDPMScheduler
from audioldm.audio.stft import TacotronSTFT
from audioldm.variational_autoencoder import AutoencoderKL
from pydub import AudioSegment
max_64_bit_int = 2**63 - 1
# Automatic device detection
if torch.cuda.is_available():
device_type = "cuda"
device_selection = "cuda:0"
else:
device_type = "cpu"
device_selection = "cpu"
class Tango:
def __init__(self, name = "declare-lab/tango2", device = device_selection):
path = snapshot_download(repo_id = name)
vae_config = json.load(open("{}/vae_config.json".format(path)))
stft_config = json.load(open("{}/stft_config.json".format(path)))
main_config = json.load(open("{}/main_config.json".format(path)))
self.vae = AutoencoderKL(**vae_config).to(device)
self.stft = TacotronSTFT(**stft_config).to(device)
self.model = AudioDiffusion(**main_config).to(device)
vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location = device)
stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location = device)
main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location = device)
self.vae.load_state_dict(vae_weights)
self.stft.load_state_dict(stft_weights)
self.model.load_state_dict(main_weights)
print ("Successfully loaded checkpoint from:", name)
self.vae.eval()
self.stft.eval()
self.model.eval()
self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder = "scheduler")
def chunks(self, lst, n):
# Yield successive n-sized chunks from a list
for i in range(0, len(lst), n):
yield lst[i:i + n]
def generate(self, prompt, steps = 100, guidance = 3, samples = 1, disable_progress = True):
# Generate audio for a single prompt string
with torch.no_grad():
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress = disable_progress)
mel = self.vae.decode_first_stage(latents)
wave = self.vae.decode_to_waveform(mel)
return wave
def generate_for_batch(self, prompts, steps = 200, guidance = 3, samples = 1, batch_size = 8, disable_progress = True):
# Generate audio for a list of prompt strings
outputs = []
for k in tqdm(range(0, len(prompts), batch_size)):
batch = prompts[k: k + batch_size]
with torch.no_grad():
latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress = disable_progress)
mel = self.vae.decode_first_stage(latents)
wave = self.vae.decode_to_waveform(mel)
outputs += [item for item in wave]
if samples == 1:
return outputs
return list(self.chunks(outputs, samples))
# Initialize TANGO
tango = Tango(device = "cpu")
tango.vae.to(device_type)
tango.stft.to(device_type)
tango.model.to(device_type)
def update_seed(is_randomize_seed, seed):
if is_randomize_seed:
return random.randint(0, max_64_bit_int)
return seed
def check(
prompt,
output_number,
steps,
guidance,
is_randomize_seed,
seed
):
if prompt is None or prompt == "":
raise gr.Error("Please provide a prompt input.")
if not output_number in [1, 2, 3]:
raise gr.Error("Please ask for 1, 2 or 3 output files.")
def update_output(output_format, output_number):
return [
gr.update(format = output_format),
gr.update(format = output_format, visible = (2 <= output_number)),
gr.update(format = output_format, visible = (output_number == 3)),
gr.update(visible = False)
]
def text2audio(
prompt,
output_number,
steps,
guidance,
is_randomize_seed,
seed
):
start = time.time()
if seed is None:
seed = random.randint(0, max_64_bit_int)
random.seed(seed)
torch.manual_seed(seed)
output_wave = tango.generate(prompt, steps, guidance, output_number)
output_wave_1 = gr.make_waveform((16000, output_wave[0]))
output_wave_2 = gr.make_waveform((16000, output_wave[1])) if (2 <= output_number) else None
output_wave_3 = gr.make_waveform((16000, output_wave[2])) if (output_number == 3) else None
end = time.time()
secondes = int(end - start)
minutes = secondes // 60
secondes = secondes - (minutes * 60)
hours = minutes // 60
minutes = minutes - (hours * 60)
return [
output_wave_1,
output_wave_2,
output_wave_3,
gr.update(visible = True, value = "Start again to get a different result. The output have been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec.")
]
# Gradio interface
with gr.Blocks() as interface:
gr.Markdown("""
<p style="text-align: center;">
<b><big><big><big>Text-to-Audio</big></big></big></b>
<br/>Generates 10 seconds of sound effects from description, freely, without account, without watermark.
</p>
<br/>
<br/>
✨ Powered by <i>Tango 2</i> AI.
<br/>
<ul>
<li>If you need to generate <b>music</b>, I recommend to use <i>MusicGen</i>,</li>
</ul>
<br/>
🐌 Slow process... ~5 min. Your computer must <b><u>not</u></b> enter into standby mode.<br/>You can duplicate this space on a free account, it works on CPU.<br/>
<a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Text-to-Audio?duplicate=true&hidden=public&hidden=public'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
<br/>
βš–οΈ You can use, modify and share the generated sounds but not for commercial uses.
"""
)
input_text = gr.Textbox(label = "Prompt", value = "Snort of a horse", lines = 2, autofocus = True)
with gr.Accordion("Advanced options", open = False):
output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = ["mp3", "wav"], value = "wav")
output_number = gr.Slider(label = "Number of generations", info = "1, 2 or 3 output files", minimum = 1, maximum = 3, value = 1, step = 1, interactive = True)
denoising_steps = gr.Slider(label = "Steps", info = "lower=faster & variant, higher=audio quality & similar", minimum = 10, maximum = 200, value = 10, step = 1, interactive = True)
guidance_scale = gr.Slider(label = "Guidance Scale", info = "lower=audio quality, higher=follow the prompt", minimum = 1, maximum = 10, value = 3, step = 0.1, interactive = True)
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed")
submit = gr.Button("πŸš€ Generate", variant = "primary")
output_audio_1 = gr.Audio(label = "Generated Audio #1/3", format = "wav", type="numpy", autoplay = True)
output_audio_2 = gr.Audio(label = "Generated Audio #2/3", format = "wav", type="numpy")
output_audio_3 = gr.Audio(label = "Generated Audio #3/3", format = "wav", type="numpy")
information = gr.Label(label = "Information")
submit.click(fn = update_seed, inputs = [
randomize_seed,
seed
], outputs = [
seed
], queue = False, show_progress = False).then(fn = check, inputs = [
input_text,
output_number,
denoising_steps,
guidance_scale,
randomize_seed,
seed
], outputs = [], queue = False, show_progress = False).success(fn = update_output, inputs = [
output_format,
output_number
], outputs = [
output_audio_1,
output_audio_2,
output_audio_3,
information
], queue = False, show_progress = False).success(fn = text2audio, inputs = [
input_text,
output_number,
denoising_steps,
guidance_scale,
randomize_seed,
seed
], outputs = [
output_audio_1,
output_audio_2,
output_audio_3,
information
], scroll_to_output = True)
gr.Examples(
fn = text2audio,
inputs = [
input_text,
output_number,
denoising_steps,
guidance_scale,
randomize_seed,
seed
],
outputs = [
output_audio_1,
output_audio_2,
output_audio_3,
information
],
examples = [
["A hammer is hitting a wooden surface", 3, 100, 3, False, 123],
["Peaceful and calming ambient music with singing bowl and other instruments.", 3, 100, 3, False, 123],
["A man is speaking in a small room.", 2, 100, 3, False, 123],
["A female is speaking followed by footstep sound", 1, 100, 3, False, 123],
["Wooden table tapping sound followed by water pouring sound.", 3, 200, 3, False, 123],
],
cache_examples = "lazy",
)
gr.Markdown(
"""
## How to prompt your sound
You can use round brackets to increase the importance of a part:
```
Peaceful and (calming) ambient music with singing bowl and other instruments
```
You can use several levels of round brackets to even more increase the importance of a part:
```
(Peaceful) and ((calming)) ambient music with singing bowl and other instruments
```
You can use number instead of several round brackets:
```
(Peaceful:1.5) and ((calming)) ambient music with singing bowl and other instruments
```
You can do the same thing with square brackets to decrease the importance of a part:
```
(Peaceful:1.5) and ((calming)) ambient music with [singing:2] bowl and other instruments
"""
)
interface.queue(10).launch()