Spaces:
Runtime error
Runtime error
Fabrice-TIERCELIN
commited on
Commit
β’
78e560c
1
Parent(s):
32614b8
Generate on the fly
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import gradio as gr
|
|
2 |
import json
|
3 |
import torch
|
4 |
import time
|
5 |
-
import wavio
|
6 |
|
7 |
from tqdm import tqdm
|
8 |
from huggingface_hub import snapshot_download
|
@@ -84,28 +83,23 @@ tango.model.to(device_type)
|
|
84 |
|
85 |
def check(
|
86 |
prompt,
|
87 |
-
output_format,
|
88 |
output_number,
|
89 |
steps,
|
90 |
guidance
|
91 |
):
|
92 |
if prompt is None or prompt == "":
|
93 |
raise gr.Error("Please provide a prompt input.")
|
94 |
-
if not output_format in ["wav", "mp3"]:
|
95 |
-
raise gr.Error("Please choose an allowed output format (.wav or .mp3).")
|
96 |
if not output_number in [1, 2, 3]:
|
97 |
raise gr.Error("Please ask for 1, 2 or 3 output files.")
|
98 |
|
99 |
-
def update_output(
|
100 |
return [
|
101 |
-
gr.update(
|
102 |
-
gr.update(
|
103 |
-
gr.update(format = output_format, visible = (output_number == 3))
|
104 |
]
|
105 |
|
106 |
def text2audio(
|
107 |
prompt,
|
108 |
-
output_format,
|
109 |
output_number,
|
110 |
steps,
|
111 |
guidance
|
@@ -113,32 +107,9 @@ def text2audio(
|
|
113 |
start = time.time()
|
114 |
output_wave = tango.generate(prompt, steps, guidance, output_number)
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
if (output_format == "mp3"):
|
120 |
-
AudioSegment.from_wav("tmp1.wav").export("tmp1.mp3", format = "mp3")
|
121 |
-
output_filename_1 = "tmp1.mp3"
|
122 |
-
|
123 |
-
if (2 <= output_number):
|
124 |
-
output_filename_2 = "tmp2.wav"
|
125 |
-
wavio.write(output_filename_2, output_wave[1], rate = 16000, sampwidth = 2)
|
126 |
-
|
127 |
-
if (output_format == "mp3"):
|
128 |
-
AudioSegment.from_wav("tmp2.wav").export("tmp2.mp3", format = "mp3")
|
129 |
-
output_filename_2 = "tmp2.mp3"
|
130 |
-
else:
|
131 |
-
output_filename_2 = None
|
132 |
-
|
133 |
-
if (output_number == 3):
|
134 |
-
output_filename_3 = "tmp3.wav"
|
135 |
-
wavio.write(output_filename_3, output_wave[2], rate = 16000, sampwidth = 2)
|
136 |
-
|
137 |
-
if (output_format == "mp3"):
|
138 |
-
AudioSegment.from_wav("tmp3.wav").export("tmp3.mp3", format = "mp3")
|
139 |
-
output_filename_3 = "tmp3.mp3"
|
140 |
-
else:
|
141 |
-
output_filename_3 = None
|
142 |
|
143 |
end = time.time()
|
144 |
secondes = int(end - start)
|
@@ -147,9 +118,9 @@ def text2audio(
|
|
147 |
hours = minutes // 60
|
148 |
minutes = minutes - (hours * 60)
|
149 |
return [
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
"Start again to get a different result. The output have been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec."
|
154 |
]
|
155 |
|
@@ -175,7 +146,6 @@ with gr.Blocks() as interface:
|
|
175 |
"""
|
176 |
)
|
177 |
input_text = gr.Textbox(label = "Prompt", value = "Snort of a horse", lines = 2, autofocus = True)
|
178 |
-
output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = ["mp3", "wav"], value = "wav")
|
179 |
with gr.Accordion("Advanced options", open = False):
|
180 |
output_number = gr.Slider(label = "Number of generations", info = "1, 2 or 3 output files", minimum = 1, maximum = 3, value = 3, step = 1, interactive = True)
|
181 |
denoising_steps = gr.Slider(label = "Steps", info = "lower=faster & variant, higher=audio quality & similar", minimum = 100, maximum = 200, value = 100, step = 1, interactive = True)
|
@@ -183,27 +153,23 @@ with gr.Blocks() as interface:
|
|
183 |
|
184 |
submit = gr.Button("π Generate", variant = "primary")
|
185 |
|
186 |
-
output_audio_1 = gr.Audio(label = "Generated Audio #1/3", format = "wav", type="
|
187 |
-
output_audio_2 = gr.Audio(label = "Generated Audio #2/3", format = "wav", type="
|
188 |
-
output_audio_3 = gr.Audio(label = "Generated Audio #3/3", format = "wav", type="
|
189 |
information = gr.Label(label = "Information")
|
190 |
|
191 |
submit.click(fn = check, inputs = [
|
192 |
input_text,
|
193 |
-
output_format,
|
194 |
output_number,
|
195 |
denoising_steps,
|
196 |
guidance_scale
|
197 |
], outputs = [], queue = False, show_progress = False).success(fn = update_output, inputs = [
|
198 |
-
output_format,
|
199 |
output_number
|
200 |
], outputs = [
|
201 |
-
output_audio_1,
|
202 |
output_audio_2,
|
203 |
output_audio_3
|
204 |
], queue = False, show_progress = False).success(fn = text2audio, inputs = [
|
205 |
input_text,
|
206 |
-
output_format,
|
207 |
output_number,
|
208 |
denoising_steps,
|
209 |
guidance_scale
|
@@ -218,7 +184,6 @@ with gr.Blocks() as interface:
|
|
218 |
fn = text2audio,
|
219 |
inputs = [
|
220 |
input_text,
|
221 |
-
output_format,
|
222 |
output_number,
|
223 |
denoising_steps,
|
224 |
guidance_scale
|
@@ -230,11 +195,11 @@ with gr.Blocks() as interface:
|
|
230 |
information
|
231 |
],
|
232 |
examples = [
|
233 |
-
["A hammer is hitting a wooden surface",
|
234 |
-
["Peaceful and calming ambient music with singing bowl and other instruments.",
|
235 |
-
["A man is speaking in a small room.",
|
236 |
-
["A female is speaking followed by footstep sound",
|
237 |
-
["Wooden table tapping sound followed by water pouring sound.",
|
238 |
],
|
239 |
cache_examples = "lazy",
|
240 |
)
|
|
|
2 |
import json
|
3 |
import torch
|
4 |
import time
|
|
|
5 |
|
6 |
from tqdm import tqdm
|
7 |
from huggingface_hub import snapshot_download
|
|
|
83 |
|
84 |
def check(
|
85 |
prompt,
|
|
|
86 |
output_number,
|
87 |
steps,
|
88 |
guidance
|
89 |
):
|
90 |
if prompt is None or prompt == "":
|
91 |
raise gr.Error("Please provide a prompt input.")
|
|
|
|
|
92 |
if not output_number in [1, 2, 3]:
|
93 |
raise gr.Error("Please ask for 1, 2 or 3 output files.")
|
94 |
|
95 |
+
def update_output(output_number):
|
96 |
return [
|
97 |
+
gr.update(visible = (2 <= output_number)),
|
98 |
+
gr.update(visible = (output_number == 3))
|
|
|
99 |
]
|
100 |
|
101 |
def text2audio(
|
102 |
prompt,
|
|
|
103 |
output_number,
|
104 |
steps,
|
105 |
guidance
|
|
|
107 |
start = time.time()
|
108 |
output_wave = tango.generate(prompt, steps, guidance, output_number)
|
109 |
|
110 |
+
output_wave_1 = gr.make_waveform((16000, output_wave[0]))
|
111 |
+
output_wave_2 = gr.make_waveform((16000, output_wave[1])) if (2 <= output_number) else None
|
112 |
+
output_wave_3 = gr.make_waveform((16000, output_wave[2])) if (output_number == 3) else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
end = time.time()
|
115 |
secondes = int(end - start)
|
|
|
118 |
hours = minutes // 60
|
119 |
minutes = minutes - (hours * 60)
|
120 |
return [
|
121 |
+
output_wave_1,
|
122 |
+
output_wave_2,
|
123 |
+
output_wave_3,
|
124 |
"Start again to get a different result. The output have been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec."
|
125 |
]
|
126 |
|
|
|
146 |
"""
|
147 |
)
|
148 |
input_text = gr.Textbox(label = "Prompt", value = "Snort of a horse", lines = 2, autofocus = True)
|
|
|
149 |
with gr.Accordion("Advanced options", open = False):
|
150 |
output_number = gr.Slider(label = "Number of generations", info = "1, 2 or 3 output files", minimum = 1, maximum = 3, value = 3, step = 1, interactive = True)
|
151 |
denoising_steps = gr.Slider(label = "Steps", info = "lower=faster & variant, higher=audio quality & similar", minimum = 100, maximum = 200, value = 100, step = 1, interactive = True)
|
|
|
153 |
|
154 |
submit = gr.Button("π Generate", variant = "primary")
|
155 |
|
156 |
+
output_audio_1 = gr.Audio(label = "Generated Audio #1/3", format = "wav", type="numpy", autoplay = True)
|
157 |
+
output_audio_2 = gr.Audio(label = "Generated Audio #2/3", format = "wav", type="numpy")
|
158 |
+
output_audio_3 = gr.Audio(label = "Generated Audio #3/3", format = "wav", type="numpy")
|
159 |
information = gr.Label(label = "Information")
|
160 |
|
161 |
submit.click(fn = check, inputs = [
|
162 |
input_text,
|
|
|
163 |
output_number,
|
164 |
denoising_steps,
|
165 |
guidance_scale
|
166 |
], outputs = [], queue = False, show_progress = False).success(fn = update_output, inputs = [
|
|
|
167 |
output_number
|
168 |
], outputs = [
|
|
|
169 |
output_audio_2,
|
170 |
output_audio_3
|
171 |
], queue = False, show_progress = False).success(fn = text2audio, inputs = [
|
172 |
input_text,
|
|
|
173 |
output_number,
|
174 |
denoising_steps,
|
175 |
guidance_scale
|
|
|
184 |
fn = text2audio,
|
185 |
inputs = [
|
186 |
input_text,
|
|
|
187 |
output_number,
|
188 |
denoising_steps,
|
189 |
guidance_scale
|
|
|
195 |
information
|
196 |
],
|
197 |
examples = [
|
198 |
+
["A hammer is hitting a wooden surface", 3, 100, 3],
|
199 |
+
["Peaceful and calming ambient music with singing bowl and other instruments.", 3, 100, 3],
|
200 |
+
["A man is speaking in a small room.", 2, 100, 3],
|
201 |
+
["A female is speaking followed by footstep sound", 1, 100, 3],
|
202 |
+
["Wooden table tapping sound followed by water pouring sound.", 3, 200, 3],
|
203 |
],
|
204 |
cache_examples = "lazy",
|
205 |
)
|