Spaces:
Runtime error
Runtime error
Fabrice-TIERCELIN
commited on
Commit
β’
e206c8a
1
Parent(s):
7b7c424
Use accordion
Browse files
app.py
CHANGED
@@ -47,12 +47,12 @@ class Tango:
|
|
47 |
self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder = "scheduler")
|
48 |
|
49 |
def chunks(self, lst, n):
|
50 |
-
|
51 |
for i in range(0, len(lst), n):
|
52 |
yield lst[i:i + n]
|
53 |
|
54 |
def generate(self, prompt, steps = 100, guidance = 3, samples = 1, disable_progress = True):
|
55 |
-
|
56 |
with torch.no_grad():
|
57 |
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress = disable_progress)
|
58 |
mel = self.vae.decode_first_stage(latents)
|
@@ -60,7 +60,7 @@ class Tango:
|
|
60 |
return wave[0]
|
61 |
|
62 |
def generate_for_batch(self, prompts, steps = 200, guidance = 3, samples = 1, batch_size = 8, disable_progress = True):
|
63 |
-
|
64 |
outputs = []
|
65 |
for k in tqdm(range(0, len(prompts), batch_size)):
|
66 |
batch = prompts[k: k + batch_size]
|
@@ -80,7 +80,19 @@ tango.vae.to(device_type)
|
|
80 |
tango.stft.to(device_type)
|
81 |
tango.model.to(device_type)
|
82 |
|
83 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
output_wave = tango.generate(prompt, steps, guidance)
|
85 |
return gr.make_waveform((16000, output_wave))
|
86 |
|
@@ -106,14 +118,19 @@ with gr.Blocks() as interface:
|
|
106 |
"""
|
107 |
)
|
108 |
input_text = gr.Textbox(label = "Prompt", value = "Snort of a horse", lines = 2, autofocus = True)
|
109 |
-
|
110 |
-
|
|
|
111 |
|
112 |
submit = gr.Button("Generate π", variant = "primary")
|
113 |
|
114 |
output_audio = gr.Audio(label = "Generated Audio")
|
115 |
|
116 |
-
submit.click(fn =
|
|
|
|
|
|
|
|
|
117 |
input_text,
|
118 |
denoising_steps,
|
119 |
guidance_scale
|
@@ -122,7 +139,7 @@ with gr.Blocks() as interface:
|
|
122 |
], scroll_to_output = True)
|
123 |
|
124 |
gr.Examples(
|
125 |
-
fn =
|
126 |
inputs = [
|
127 |
input_text,
|
128 |
denoising_steps,
|
|
|
47 |
self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder = "scheduler")
|
48 |
|
49 |
def chunks(self, lst, n):
|
50 |
+
# Yield successive n-sized chunks from a list
|
51 |
for i in range(0, len(lst), n):
|
52 |
yield lst[i:i + n]
|
53 |
|
54 |
def generate(self, prompt, steps = 100, guidance = 3, samples = 1, disable_progress = True):
|
55 |
+
# Generate audio for a single prompt string
|
56 |
with torch.no_grad():
|
57 |
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress = disable_progress)
|
58 |
mel = self.vae.decode_first_stage(latents)
|
|
|
60 |
return wave[0]
|
61 |
|
62 |
def generate_for_batch(self, prompts, steps = 200, guidance = 3, samples = 1, batch_size = 8, disable_progress = True):
|
63 |
+
# Generate audio for a list of prompt strings
|
64 |
outputs = []
|
65 |
for k in tqdm(range(0, len(prompts), batch_size)):
|
66 |
batch = prompts[k: k + batch_size]
|
|
|
80 |
tango.stft.to(device_type)
|
81 |
tango.model.to(device_type)
|
82 |
|
83 |
+
def check(
|
84 |
+
prompt,
|
85 |
+
steps,
|
86 |
+
guidance
|
87 |
+
):
|
88 |
+
if prompt is None or prompt == "":
|
89 |
+
raise gr.Error("Please provide a prompt input.")
|
90 |
+
|
91 |
+
def text2audio(
|
92 |
+
prompt,
|
93 |
+
steps,
|
94 |
+
guidance
|
95 |
+
):
|
96 |
output_wave = tango.generate(prompt, steps, guidance)
|
97 |
return gr.make_waveform((16000, output_wave))
|
98 |
|
|
|
118 |
"""
|
119 |
)
|
120 |
input_text = gr.Textbox(label = "Prompt", value = "Snort of a horse", lines = 2, autofocus = True)
|
121 |
+
with gr.Accordion("Advanced options", open = False):
|
122 |
+
denoising_steps = gr.Slider(label = "Steps", info = "lower=faster & variant, higher=audio quality & similar", minimum = 100, maximum = 200, value = 100, step = 1, interactive = True)
|
123 |
+
guidance_scale = gr.Slider(label = "Guidance Scale", info = "lower=audio quality, higher=follow the prompt", minimum = 1, maximum = 10, value = 3, step = 0.1, interactive = True)
|
124 |
|
125 |
submit = gr.Button("Generate π", variant = "primary")
|
126 |
|
127 |
output_audio = gr.Audio(label = "Generated Audio")
|
128 |
|
129 |
+
submit.click(fn = check, inputs = [
|
130 |
+
input_text,
|
131 |
+
denoising_steps,
|
132 |
+
guidance_scale
|
133 |
+
], outputs = [], queue = False, show_progress = False).success(fn = text2audio, inputs = [
|
134 |
input_text,
|
135 |
denoising_steps,
|
136 |
guidance_scale
|
|
|
139 |
], scroll_to_output = True)
|
140 |
|
141 |
gr.Examples(
|
142 |
+
fn = text2audio,
|
143 |
inputs = [
|
144 |
input_text,
|
145 |
denoising_steps,
|