import gradio as gr import json import torch from tqdm import tqdm from huggingface_hub import snapshot_download from models import AudioDiffusion, DDPMScheduler from audioldm.audio.stft import TacotronSTFT from audioldm.variational_autoencoder import AutoencoderKL from gradio import Markdown # Automatic device detection if torch.cuda.is_available(): device_type = "cuda" device_selection = "cuda:0" else: device_type = "cpu" device_selection = "cpu" class Tango: def __init__(self, name = "declare-lab/tango2", device = device_selection): path = snapshot_download(repo_id = name) vae_config = json.load(open("{}/vae_config.json".format(path))) stft_config = json.load(open("{}/stft_config.json".format(path))) main_config = json.load(open("{}/main_config.json".format(path))) self.vae = AutoencoderKL(**vae_config).to(device) self.stft = TacotronSTFT(**stft_config).to(device) self.model = AudioDiffusion(**main_config).to(device) vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location = device) stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location = device) main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location = device) self.vae.load_state_dict(vae_weights) self.stft.load_state_dict(stft_weights) self.model.load_state_dict(main_weights) print ("Successfully loaded checkpoint from:", name) self.vae.eval() self.stft.eval() self.model.eval() self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder = "scheduler") def chunks(self, lst, n): """ Yield successive n-sized chunks from a list. """ for i in range(0, len(lst), n): yield lst[i:i + n] def generate(self, prompt, steps = 100, guidance = 3, samples = 1, disable_progress = True): """ Generate audio for a single prompt string. """ with torch.no_grad(): latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress = disable_progress) mel = self.vae.decode_first_stage(latents) wave = self.vae.decode_to_waveform(mel) return wave[0] def generate_for_batch(self, prompts, steps = 200, guidance = 3, samples = 1, batch_size = 8, disable_progress = True): """ Generate audio for a list of prompt strings. """ outputs = [] for k in tqdm(range(0, len(prompts), batch_size)): batch = prompts[k: k + batch_size] with torch.no_grad(): latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress = disable_progress) mel = self.vae.decode_first_stage(latents) wave = self.vae.decode_to_waveform(mel) outputs += [item for item in wave] if samples == 1: return outputs return list(self.chunks(outputs, samples)) # Initialize TANGO tango = Tango(device = "cpu") tango.vae.to(device_type) tango.stft.to(device_type) tango.model.to(device_type) def gradio_generate(prompt, steps, guidance): output_wave = tango.generate(prompt, steps, guidance) return gr.make_waveform((16000, output_wave)) # Gradio interface with gr.Blocks() as interface: gr.Markdown("""

Text-to-Audio
Generates an audio file, freely, without account, without watermark, that you can download.



✨ Powered by Tango 2 AI.

🐌 Slow process... Your computer must not enter into standby mode.
You can duplicate this space on a free account, it works on CPU.

⚖️ You can use, modify and share the generated sounds but not for commercial uses. """ ) input_text = gr.Textbox(label = "Prompt", value = "Snort of a horse", lines = 2, autofocus = True) denoising_steps = gr.Slider(label = "Steps", minimum = 100, maximum = 200, value = 100, step = 1, interactive = True) guidance_scale = gr.Slider(label = "Guidance Scale", minimum = 1, maximum = 10, value = 3, step = 0.1, interactive = True) submit = gr.Button("Generate 🚀", variant = "primary") output_audio = gr.Audio(label = "Generated Audio") submit.click(fn = gradio_generate, inputs = [ input_text, denoising_steps, guidance_scale ], outputs = [ output_audio ], scroll_to_output = True) gr.Examples( fn = gradio_generate, inputs = [ input_text, denoising_steps, guidance_scale ], outputs = [ output_audio ], examples = [ ["A hammer is hitting a wooden surface", 100, 3], ["Peaceful and calming ambient music with singing bowl and other instruments.", 100, 3], ["A man is speaking in a small room.", 100, 3], ["A female is speaking followed by footstep sound", 100, 3], ["Wooden table tapping sound followed by water pouring sound.", 100, 3], ], cache_examples = "lazy", ) interface.queue(10).launch()