File size: 2,626 Bytes
67f8e6d
 
 
 
898a621
67f8e6d
44594ab
 
 
 
322bd58
67f8e6d
 
 
 
 
322bd58
67f8e6d
 
 
 
 
898a621
67f8e6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
898a621
67f8e6d
 
 
 
 
 
 
898a621
67f8e6d
 
 
 
 
 
 
 
 
898a621
67f8e6d
 
 
 
 
 
 
898a621
67f8e6d
 
898a621
67f8e6d
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import gradio as gr
import numpy as np
import random
import torch
from diffusers import StableDiffusion3Pipeline

# Access Secrets, token authentication for gated models
import os
print(os.getenv('HF_TOKEN'))

gr.load("models/stabilityai/stable-diffusion-3-diffusers")


with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):

        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=4,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=2.0,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=12,
                    step=1,
                    value=4,
                )
        
        
    run_button.click(
        fn = infer,
        inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result]
    )

demo.queue().launch()