import gradio as gr import numpy as np import random import torch from diffusers import StableDiffusion3Pipeline # Access Secrets, token authentication for gated models import os print(os.getenv('HF_TOKEN')) #Hardware Selection device = "cuda" if torch.cuda.is_available() else "cpu" # GPU support if torch.cuda.is_available(): torch.cuda.max_memory_allocated(device=device) pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", token=HF_TOKEN, torch_dtype=torch.float16) pipe.enable_xformers_memory_efficient_attention() pipe = pipe.to(device) # CPU Support else: pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt = prompt, negative_prompt = negative_prompt, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, width = width, height = height, generator = generator ).images[0] return image css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # FallnAI Text2Image """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=4, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=2.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=12, step=1, value=4, ) run_button.click( fn = infer, inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result] ) demo.queue().launch()