Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from pandas_profiling import ProfileReport
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
from sklearn.linear_model import LinearRegression
|
6 |
+
from sklearn.tree import DecisionTreeRegressor
|
7 |
+
from sklearn.ensemble import RandomForestRegressor
|
8 |
+
import plotly.express as px
|
9 |
+
|
10 |
+
# Data Ingestion
|
11 |
+
uploaded_file = st.file_uploader("Upload your dataset:", type=["csv",_"xlsx",_"json"])
|
12 |
+
if uploaded_file:
|
13 |
+
df = pd.read_csv(uploaded_file)
|
14 |
+
st.write("Data Preview:")
|
15 |
+
st.write(df.head())
|
16 |
+
|
17 |
+
# Data Preparation
|
18 |
+
st.write("Data Preparation:")
|
19 |
+
profile = ProfileReport(df, title="Data Profiling Report")
|
20 |
+
st.write(profile)
|
21 |
+
|
22 |
+
# Data Cleaning
|
23 |
+
st.write("Data Cleaning:")
|
24 |
+
handle_missing_values = st.selectbox("Handle missing values:", ["Mean",_"Median",_"Imputation"])
|
25 |
+
handle_outliers = st.selectbox("Handle outliers:", ["Standardization",_"_Winsorization"])
|
26 |
+
|
27 |
+
# Model Training
|
28 |
+
st.write("Model Training:")
|
29 |
+
model_type = st.selectbox("Choose a model:", ["Linear_Regression",_"Decision_Trees",_"Random_Forest"])
|
30 |
+
hyperparams = {}
|
31 |
+
if model_type == "Linear Regression":
|
32 |
+
hyperparams["alpha"] = st.slider("Regularization strength:", 0.1, 10.0)
|
33 |
+
elif model_type == "Decision Trees":
|
34 |
+
hyperparams["max_depth"] = st.slider("Maximum depth:", 1, 10)
|
35 |
+
elif model_type == "Random Forest":
|
36 |
+
hyperparams["n_estimators"] = st.slider("Number of estimators:", 10, 100)
|
37 |
+
|
38 |
+
X_train, X_test, y_train, y_test = train_test_split(df.drop("target", axis=1), df["target"], test_size=0.2, random_state=42)
|
39 |
+
|
40 |
+
if model_type == "Linear Regression":
|
41 |
+
model = LinearRegression(**hyperparams)
|
42 |
+
elif model_type == "Decision Trees":
|
43 |
+
model = DecisionTreeRegressor(**hyperparams)
|
44 |
+
elif model_type == "Random Forest":
|
45 |
+
model = RandomForestRegressor(**hyperparams)
|
46 |
+
|
47 |
+
model.fit(X_train, y_train)
|
48 |
+
y_pred = model.predict(X_test)
|
49 |
+
|
50 |
+
# Model Evaluation
|
51 |
+
st.write("Model Evaluation:")
|
52 |
+
st.write("Accuracy:", model.score(X_test, y_test))
|
53 |
+
st.write("Confusion Matrix:")
|
54 |
+
conf_mat = pd.crosstab(y_test, y_pred, rownames=["Actual"], colnames=["Predicted"])
|
55 |
+
st.plotly(px.imshow(conf_mat, color_continuous_scale="blues"), use_container_width=True)
|
56 |
+
|
57 |
+
# Model Deployment
|
58 |
+
st.write("Model Deployment:")
|
59 |
+
download_model = st.download_button("Download trained model", data=model, file_name="model.py")
|
60 |
+
deploy_to_cloud = st.button("Deploy to cloud platform")
|