import streamlit as st import pandas as pd from pandas_profiling import ProfileReport from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor import plotly.express as px # Data Ingestion uploaded_file = st.file_uploader("Upload your dataset:", type=["csv", "xlsx", "json"]) if uploaded_file: df = pd.read_csv(uploaded_file) st.write("Data Preview:") st.write(df.head()) # Data Preparation st.write("Data Preparation:") profile = ProfileReport(df, title="Data Profiling Report") st.write(profile) # Data Cleaning st.write("Data Cleaning:") handle_missing_values = st.selectbox("Handle missing values:", ["Mean",_"Median",_"Imputation"]) handle_outliers = st.selectbox("Handle outliers:", ["Standardization",_"_Winsorization"]) # Model Training st.write("Model Training:") model_type = st.selectbox("Choose a model:", ["Linear_Regression",_"Decision_Trees",_"Random_Forest"]) hyperparams = {} if model_type == "Linear Regression": hyperparams["alpha"] = st.slider("Regularization strength:", 0.1, 10.0) elif model_type == "Decision Trees": hyperparams["max_depth"] = st.slider("Maximum depth:", 1, 10) elif model_type == "Random Forest": hyperparams["n_estimators"] = st.slider("Number of estimators:", 10, 100) X_train, X_test, y_train, y_test = train_test_split(df.drop("target", axis=1), df["target"], test_size=0.2, random_state=42) if model_type == "Linear Regression": model = LinearRegression(**hyperparams) elif model_type == "Decision Trees": model = DecisionTreeRegressor(**hyperparams) elif model_type == "Random Forest": model = RandomForestRegressor(**hyperparams) model.fit(X_train, y_train) y_pred = model.predict(X_test) # Model Evaluation st.write("Model Evaluation:") st.write("Accuracy:", model.score(X_test, y_test)) st.write("Confusion Matrix:") conf_mat = pd.crosstab(y_test, y_pred, rownames=["Actual"], colnames=["Predicted"]) st.plotly(px.imshow(conf_mat, color_continuous_scale="blues"), use_container_width=True) # Model Deployment st.write("Model Deployment:") download_model = st.download_button("Download trained model", data=model, file_name="model.py") deploy_to_cloud = st.button("Deploy to cloud platform")