import gradio as gr import edge_tts import asyncio import tempfile import os from huggingface_hub import InferenceClient import re from streaming_stt_nemo import Model import torch import random default_lang = "en" engines = { default_lang: Model(default_lang) } def transcribe(audio): lang = "en" model = engines[lang] text = model.stt_file(audio)[0] return text HF_TOKEN = os.environ.get("HF_TOKEN", None) def client_fn(model): if "Mixtral" in model: return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") elif "Llama" in model: return InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") elif "Mistral" in model: return InferenceClient("mistralai/Mistral-7B-Instruct-v0.2") elif "Phi" in model: return InferenceClient("microsoft/Phi-3-mini-4k-instruct") else: return InferenceClient("microsoft/Phi-3-mini-4k-instruct") def randomize_seed_fn(seed: int) -> int: seed = random.randint(0, 999999) return seed system_instructions1 = """ [SYSTEM] Answer as the FallnAI lab assistant, developed by FallnAI. Keep conversation friendly, short, clear, and concise. Avoid unnecessary introductions and answer the user's questions directly. Respond in a normal, conversational manner while being friendly and helpful. [USER] """ def models(text, model="Mixtral 8x7B", seed=42): seed = int(randomize_seed_fn(seed)) generator = torch.Generator().manual_seed(seed) client = client_fn(model) generate_kwargs = dict( max_new_tokens=300, seed=seed ) formatted_prompt = system_instructions1 + text stream = client.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: if not response.token.text == "": output += response.token.text return output async def respond(audio, model, seed): user = transcribe(audio) reply = models(user, model, seed) communicate = edge_tts.Communicate(reply) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) yield tmp_path DESCRIPTION = """ #