Faridmaruf commited on
Commit
5beec90
1 Parent(s): ed91a72

Delete vc_infer_pipeline.py

Browse files
Files changed (1) hide show
  1. vc_infer_pipeline.py +0 -431
vc_infer_pipeline.py DELETED
@@ -1,431 +0,0 @@
1
- import numpy as np, parselmouth, torch, pdb
2
- from time import time as ttime
3
- import torch.nn.functional as F
4
- import scipy.signal as signal
5
- import pyworld, os, traceback, faiss, librosa, torchcrepe
6
- from scipy import signal
7
- from functools import lru_cache
8
-
9
- bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
10
-
11
- input_audio_path2wav = {}
12
-
13
-
14
- @lru_cache
15
- def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
16
- audio = input_audio_path2wav[input_audio_path]
17
- f0, t = pyworld.harvest(
18
- audio,
19
- fs=fs,
20
- f0_ceil=f0max,
21
- f0_floor=f0min,
22
- frame_period=frame_period,
23
- )
24
- f0 = pyworld.stonemask(audio, f0, t, fs)
25
- return f0
26
-
27
-
28
- def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
29
- # print(data1.max(),data2.max())
30
- rms1 = librosa.feature.rms(
31
- y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
32
- ) # 每半秒一个点
33
- rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
34
- rms1 = torch.from_numpy(rms1)
35
- rms1 = F.interpolate(
36
- rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
37
- ).squeeze()
38
- rms2 = torch.from_numpy(rms2)
39
- rms2 = F.interpolate(
40
- rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
41
- ).squeeze()
42
- rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
43
- data2 *= (
44
- torch.pow(rms1, torch.tensor(1 - rate))
45
- * torch.pow(rms2, torch.tensor(rate - 1))
46
- ).numpy()
47
- return data2
48
-
49
-
50
- class VC(object):
51
- def __init__(self, tgt_sr, config):
52
- self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
53
- config.x_pad,
54
- config.x_query,
55
- config.x_center,
56
- config.x_max,
57
- config.is_half,
58
- )
59
- self.sr = 16000 # hubert输入采样率
60
- self.window = 160 # 每帧点数
61
- self.t_pad = self.sr * self.x_pad # 每条前后pad时间
62
- self.t_pad_tgt = tgt_sr * self.x_pad
63
- self.t_pad2 = self.t_pad * 2
64
- self.t_query = self.sr * self.x_query # 查询切点前后查询时间
65
- self.t_center = self.sr * self.x_center # 查询切点位置
66
- self.t_max = self.sr * self.x_max # 免查询时长阈值
67
- self.device = config.device
68
-
69
- def get_f0(
70
- self,
71
- input_audio_path,
72
- x,
73
- p_len,
74
- f0_up_key,
75
- f0_method,
76
- filter_radius,
77
- inp_f0=None,
78
- ):
79
- global input_audio_path2wav
80
- time_step = self.window / self.sr * 1000
81
- f0_min = 50
82
- f0_max = 1100
83
- f0_mel_min = 1127 * np.log(1 + f0_min / 700)
84
- f0_mel_max = 1127 * np.log(1 + f0_max / 700)
85
- if f0_method == "pm":
86
- f0 = (
87
- parselmouth.Sound(x, self.sr)
88
- .to_pitch_ac(
89
- time_step=time_step / 1000,
90
- voicing_threshold=0.6,
91
- pitch_floor=f0_min,
92
- pitch_ceiling=f0_max,
93
- )
94
- .selected_array["frequency"]
95
- )
96
- pad_size = (p_len - len(f0) + 1) // 2
97
- if pad_size > 0 or p_len - len(f0) - pad_size > 0:
98
- f0 = np.pad(
99
- f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
100
- )
101
- elif f0_method == "harvest":
102
- input_audio_path2wav[input_audio_path] = x.astype(np.double)
103
- f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
104
- if filter_radius > 2:
105
- f0 = signal.medfilt(f0, 3)
106
- elif f0_method == "crepe":
107
- model = "full"
108
- # Pick a batch size that doesn't cause memory errors on your gpu
109
- batch_size = 512
110
- # Compute pitch using first gpu
111
- audio = torch.tensor(np.copy(x))[None].float()
112
- f0, pd = torchcrepe.predict(
113
- audio,
114
- self.sr,
115
- self.window,
116
- f0_min,
117
- f0_max,
118
- model,
119
- batch_size=batch_size,
120
- device=self.device,
121
- return_periodicity=True,
122
- )
123
- pd = torchcrepe.filter.median(pd, 3)
124
- f0 = torchcrepe.filter.mean(f0, 3)
125
- f0[pd < 0.1] = 0
126
- f0 = f0[0].cpu().numpy()
127
- f0 *= pow(2, f0_up_key / 12)
128
- # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
129
- tf0 = self.sr // self.window # 每秒f0点数
130
- if inp_f0 is not None:
131
- delta_t = np.round(
132
- (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
133
- ).astype("int16")
134
- replace_f0 = np.interp(
135
- list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
136
- )
137
- shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
138
- f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
139
- :shape
140
- ]
141
- # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
142
- f0bak = f0.copy()
143
- f0_mel = 1127 * np.log(1 + f0 / 700)
144
- f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
145
- f0_mel_max - f0_mel_min
146
- ) + 1
147
- f0_mel[f0_mel <= 1] = 1
148
- f0_mel[f0_mel > 255] = 255
149
- f0_coarse = np.rint(f0_mel).astype(np.int)
150
- return f0_coarse, f0bak # 1-0
151
-
152
- def vc(
153
- self,
154
- model,
155
- net_g,
156
- sid,
157
- audio0,
158
- pitch,
159
- pitchf,
160
- times,
161
- index,
162
- big_npy,
163
- index_rate,
164
- version,
165
- protect,
166
- ): # ,file_index,file_big_npy
167
- feats = torch.from_numpy(audio0)
168
- if self.is_half:
169
- feats = feats.half()
170
- else:
171
- feats = feats.float()
172
- if feats.dim() == 2: # double channels
173
- feats = feats.mean(-1)
174
- assert feats.dim() == 1, feats.dim()
175
- feats = feats.view(1, -1)
176
- padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
177
-
178
- inputs = {
179
- "source": feats.to(self.device),
180
- "padding_mask": padding_mask,
181
- "output_layer": 9 if version == "v1" else 12,
182
- }
183
- t0 = ttime()
184
- with torch.no_grad():
185
- logits = model.extract_features(**inputs)
186
- feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
187
- if protect < 0.5 and pitch!=None and pitchf!=None:
188
- feats0 = feats.clone()
189
- if (
190
- isinstance(index, type(None)) == False
191
- and isinstance(big_npy, type(None)) == False
192
- and index_rate != 0
193
- ):
194
- npy = feats[0].cpu().numpy()
195
- if self.is_half:
196
- npy = npy.astype("float32")
197
-
198
- # _, I = index.search(npy, 1)
199
- # npy = big_npy[I.squeeze()]
200
-
201
- score, ix = index.search(npy, k=8)
202
- weight = np.square(1 / score)
203
- weight /= weight.sum(axis=1, keepdims=True)
204
- npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
205
-
206
- if self.is_half:
207
- npy = npy.astype("float16")
208
- feats = (
209
- torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
210
- + (1 - index_rate) * feats
211
- )
212
-
213
- feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
214
- if protect < 0.5 and pitch!=None and pitchf!=None:
215
- feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
216
- 0, 2, 1
217
- )
218
- t1 = ttime()
219
- p_len = audio0.shape[0] // self.window
220
- if feats.shape[1] < p_len:
221
- p_len = feats.shape[1]
222
- if pitch != None and pitchf != None:
223
- pitch = pitch[:, :p_len]
224
- pitchf = pitchf[:, :p_len]
225
-
226
- if protect < 0.5 and pitch!=None and pitchf!=None:
227
- pitchff = pitchf.clone()
228
- pitchff[pitchf > 0] = 1
229
- pitchff[pitchf < 1] = protect
230
- pitchff = pitchff.unsqueeze(-1)
231
- feats = feats * pitchff + feats0 * (1 - pitchff)
232
- feats = feats.to(feats0.dtype)
233
- p_len = torch.tensor([p_len], device=self.device).long()
234
- with torch.no_grad():
235
- if pitch != None and pitchf != None:
236
- audio1 = (
237
- (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
238
- .data.cpu()
239
- .float()
240
- .numpy()
241
- )
242
- else:
243
- audio1 = (
244
- (net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
245
- )
246
- del feats, p_len, padding_mask
247
- if torch.cuda.is_available():
248
- torch.cuda.empty_cache()
249
- t2 = ttime()
250
- times[0] += t1 - t0
251
- times[2] += t2 - t1
252
- return audio1
253
-
254
- def pipeline(
255
- self,
256
- model,
257
- net_g,
258
- sid,
259
- audio,
260
- input_audio_path,
261
- times,
262
- f0_up_key,
263
- f0_method,
264
- file_index,
265
- # file_big_npy,
266
- index_rate,
267
- if_f0,
268
- filter_radius,
269
- tgt_sr,
270
- resample_sr,
271
- rms_mix_rate,
272
- version,
273
- protect,
274
- f0_file=None,
275
- ):
276
- if (
277
- file_index != ""
278
- # and file_big_npy != ""
279
- # and os.path.exists(file_big_npy) == True
280
- and os.path.exists(file_index) == True
281
- and index_rate != 0
282
- ):
283
- try:
284
- index = faiss.read_index(file_index)
285
- # big_npy = np.load(file_big_npy)
286
- big_npy = index.reconstruct_n(0, index.ntotal)
287
- except:
288
- traceback.print_exc()
289
- index = big_npy = None
290
- else:
291
- index = big_npy = None
292
- audio = signal.filtfilt(bh, ah, audio)
293
- audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
294
- opt_ts = []
295
- if audio_pad.shape[0] > self.t_max:
296
- audio_sum = np.zeros_like(audio)
297
- for i in range(self.window):
298
- audio_sum += audio_pad[i : i - self.window]
299
- for t in range(self.t_center, audio.shape[0], self.t_center):
300
- opt_ts.append(
301
- t
302
- - self.t_query
303
- + np.where(
304
- np.abs(audio_sum[t - self.t_query : t + self.t_query])
305
- == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
306
- )[0][0]
307
- )
308
- s = 0
309
- audio_opt = []
310
- t = None
311
- t1 = ttime()
312
- audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
313
- p_len = audio_pad.shape[0] // self.window
314
- inp_f0 = None
315
- if hasattr(f0_file, "name") == True:
316
- try:
317
- with open(f0_file.name, "r") as f:
318
- lines = f.read().strip("\n").split("\n")
319
- inp_f0 = []
320
- for line in lines:
321
- inp_f0.append([float(i) for i in line.split(",")])
322
- inp_f0 = np.array(inp_f0, dtype="float32")
323
- except:
324
- traceback.print_exc()
325
- sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
326
- pitch, pitchf = None, None
327
- if if_f0 == 1:
328
- pitch, pitchf = self.get_f0(
329
- input_audio_path,
330
- audio_pad,
331
- p_len,
332
- f0_up_key,
333
- f0_method,
334
- filter_radius,
335
- inp_f0,
336
- )
337
- pitch = pitch[:p_len]
338
- pitchf = pitchf[:p_len]
339
- if self.device == "mps":
340
- pitchf = pitchf.astype(np.float32)
341
- pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
342
- pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
343
- t2 = ttime()
344
- times[1] += t2 - t1
345
- for t in opt_ts:
346
- t = t // self.window * self.window
347
- if if_f0 == 1:
348
- audio_opt.append(
349
- self.vc(
350
- model,
351
- net_g,
352
- sid,
353
- audio_pad[s : t + self.t_pad2 + self.window],
354
- pitch[:, s // self.window : (t + self.t_pad2) // self.window],
355
- pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
356
- times,
357
- index,
358
- big_npy,
359
- index_rate,
360
- version,
361
- protect,
362
- )[self.t_pad_tgt : -self.t_pad_tgt]
363
- )
364
- else:
365
- audio_opt.append(
366
- self.vc(
367
- model,
368
- net_g,
369
- sid,
370
- audio_pad[s : t + self.t_pad2 + self.window],
371
- None,
372
- None,
373
- times,
374
- index,
375
- big_npy,
376
- index_rate,
377
- version,
378
- protect,
379
- )[self.t_pad_tgt : -self.t_pad_tgt]
380
- )
381
- s = t
382
- if if_f0 == 1:
383
- audio_opt.append(
384
- self.vc(
385
- model,
386
- net_g,
387
- sid,
388
- audio_pad[t:],
389
- pitch[:, t // self.window :] if t is not None else pitch,
390
- pitchf[:, t // self.window :] if t is not None else pitchf,
391
- times,
392
- index,
393
- big_npy,
394
- index_rate,
395
- version,
396
- protect,
397
- )[self.t_pad_tgt : -self.t_pad_tgt]
398
- )
399
- else:
400
- audio_opt.append(
401
- self.vc(
402
- model,
403
- net_g,
404
- sid,
405
- audio_pad[t:],
406
- None,
407
- None,
408
- times,
409
- index,
410
- big_npy,
411
- index_rate,
412
- version,
413
- protect,
414
- )[self.t_pad_tgt : -self.t_pad_tgt]
415
- )
416
- audio_opt = np.concatenate(audio_opt)
417
- if rms_mix_rate != 1:
418
- audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
419
- if resample_sr >= 16000 and tgt_sr != resample_sr:
420
- audio_opt = librosa.resample(
421
- audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
422
- )
423
- audio_max = np.abs(audio_opt).max() / 0.99
424
- max_int16 = 32768
425
- if audio_max > 1:
426
- max_int16 /= audio_max
427
- audio_opt = (audio_opt * max_int16).astype(np.int16)
428
- del pitch, pitchf, sid
429
- if torch.cuda.is_available():
430
- torch.cuda.empty_cache()
431
- return audio_opt