image_cut_rect / data_utils /box_utils.py
HERIUN
add files
6a07cb2
raw
history blame
16.5 kB
import cv2
import numpy as np
import pandas as pd
import pkg_resources as pkg
import torch
import math
from typing import Tuple
from data_utils.image_utils import _get_width_and_height
def points_to_xyxy(coords: np.ndarray) -> list:
x_coords = [coord[0] for coord in coords]
y_coords = [coord[1] for coord in coords]
x1 = min(x_coords)
y1 = min(y_coords)
x2 = max(x_coords)
y2 = max(y_coords)
return [x1, y1, x2, y2]
def xyxy2xywh(x):
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center
y[..., 1] = (x[..., 1] + x[..., 3]) / 2 # y center
y[..., 2] = x[..., 2] - x[..., 0] # width
y[..., 3] = x[..., 3] - x[..., 1] # height
return y
def xywh2xyxy(x):
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x
y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y
y[..., 2] = x[..., 0] + x[..., 2] / 2 # bottom right x
y[..., 3] = x[..., 1] + x[..., 3] / 2 # bottom right y
return y
def is_abox_in_bbox(abox_coords, bbox_coords):
# aboxκ°€ bboxμ•ˆμ— μžˆλŠ”μ§€ ν™•μΈν•˜λŠ” ν•¨μˆ˜. μ’Œν‘œν˜•μ‹. (x1,y1,x2,y2)
if (
bbox_coords[0] <= abox_coords[0]
and bbox_coords[1] <= abox_coords[1]
and abox_coords[2] <= bbox_coords[2]
and abox_coords[3] <= bbox_coords[3]
):
return True
else:
return False
def calculate_aspect_ratio(box):
width = box[2] - box[0]
height = box[3] - box[1]
aspect_ratio = width / (height + 1e-8)
return aspect_ratio
def get_box_shape(box, threshold=0.1):
"""
Check if a box is close to a square.
- threshold (float): The threshold for considering the box as close to a square.
Default is 0.1.
Returns:
- str: "square" or "horizontal" or "vertical"
"""
aspect_ratio = calculate_aspect_ratio(box)
if abs(1 - aspect_ratio) < threshold:
return "square"
elif aspect_ratio > 1:
return "horizontal"
elif aspect_ratio < 1:
return "vertical"
def calculate_aspect_ratio_loss(predicted_box, gt_box):
"""predicted_box와 gt_boxκ°„μ˜ κ°€λ‘œμ„Έλ‘œ λΉ„μœ¨μ— λŒ€ν•œ 차이도λ₯Ό λ°˜ν™˜ range:0~1. 클수둝 차이가 ν¬λ‹€λŠ” 뜻."""
gt_aspect_ratio = calculate_aspect_ratio(gt_box)
pred_aspect_ratio = calculate_aspect_ratio(predicted_box)
ratio_difference = abs(gt_aspect_ratio - pred_aspect_ratio)
loss = 2 * math.atan(ratio_difference) / math.pi
return loss
def clip_boxes(boxes, shape):
# Clip boxes (xyxy) to image shape (height, width)
if isinstance(boxes, torch.Tensor): # faster individually
boxes[..., 0].clamp_(0, shape[1]) # x1
boxes[..., 1].clamp_(0, shape[0]) # y1
boxes[..., 2].clamp_(0, shape[1]) # x2
boxes[..., 3].clamp_(0, shape[0]) # y2
else: # np.array (faster grouped)
boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2
boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2
def is_box_overlap(box1, box2):
# Box overlap checking logic
if box1[0] > box2[2] or box1[2] < box2[0] or box1[1] > box2[3] or box1[3] < box2[1]:
return False
else:
return True
def intersection_area(box1, box2):
"""
Calculate the intersection area between two bounding boxes.
Parameters:
- box1, box2: Tuple or list representing the bounding box in the format (x1, y1, x2, y2).
Returns:
- area: Intersection area between the two boxes.
"""
x1_box1, y1_box1, x2_box1, y2_box1 = box1
x1_box2, y1_box2, x2_box2, y2_box2 = box2
# Calculate intersection coordinates
x_intersection = max(x1_box1, x1_box2)
y_intersection = max(y1_box1, y1_box2)
x_intersection_end = min(x2_box1, x2_box2)
y_intersection_end = min(y2_box1, y2_box2)
# Calculate intersection area
width_intersection = max(0, x_intersection_end - x_intersection)
height_intersection = max(0, y_intersection_end - y_intersection)
area = width_intersection * height_intersection
return area
def bbox_iou(box1, box2, GIoU=False, DIoU=False, CIoU=False, CIoU2=False, eps=1e-7):
"""
Caclulate IoUs(GIoU,DIoU,CIoU,CIoU2)
Parameters:
- box1, box2: Tuple or list representing the bounding box in the format (x1, y1, x2, y2).
Returns:
- IoU or GIoU or DIoU or CIoU or CIoU2
"""
# Returns Intersection over Union (IoU)
# Get the coordinates of bounding boxes
# x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1
b2_x1, b2_y1, b2_x2, b2_y2 = box2
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
# Intersection area
inter = intersection_area(box1, box2)
# Union Area
union = w1 * h1 + w2 * h2 - inter + eps
iou = inter / union
if CIoU or DIoU or GIoU or CIoU2:
cw = max(b1_x2, b2_x2) - min(
b1_x1, b2_x1
) # convex (smallest enclosing box) width
ch = max(b1_y2, b2_y2) - min(b1_y1, b2_y1) # convex height
c_area = cw * ch + eps # convex area
giou_penalty = (c_area - union) / c_area
if GIoU: # GIoU https://arxiv.org/pdf/1902.09630.pdf
return round(iou - giou_penalty, 4) # GIoU
elif (
DIoU or CIoU
): # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
rho2 = (
(b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2
+ (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2
) / 4 # center dist ** 2
c2 = cw**2 + ch**2 + eps # convex diagonal squared
diou_penalty = rho2 / c2
if DIoU:
return round(iou - diou_penalty, 4) # DIoU
if CIoU or CIoU2:
v = (4 / math.pi**2) * (
(np.arctan((w2 / h2)) - np.arctan(w1 / h1)) ** 2
)
alpha = v / (v - iou + (1 + eps))
ciou_penalty = diou_penalty + alpha * v
if CIoU2:
ciou2_penalty = giou_penalty + diou_penalty + alpha * v
return round(iou - ciou2_penalty) # CIoU2
return round(iou - ciou_penalty, 4) # CIoU
return round(iou, 4) # IoU
def rotate_around_point(x, y, pivot_x, pivot_y, degrees) -> Tuple[int, int]:
"""주어진 μ’Œν‘œ (x,y)λ₯Ό μΆ• μ’Œν‘œ(pivot_x,pivot_y_λ₯Ό κΈ°μ€€μœΌλ‘œ λ°˜μ‹œκ³„ λ°©ν–₯으둜 νšŒμ „. return new_x,new_y"""
# 각도λ₯Ό λΌλ””μ•ˆμœΌλ‘œ λ³€ν™˜
angle_radians = np.radians(degrees)
# νšŒμ „ λ³€ν™˜ 적용
x_new = (
pivot_x
+ np.cos(angle_radians) * (x - pivot_x)
- np.sin(angle_radians) * (y - pivot_y)
)
y_new = (
pivot_y
+ np.sin(angle_radians) * (x - pivot_x)
+ np.cos(angle_radians) * (y - pivot_y)
)
return int(x_new), int(y_new)
def rotate_box_coordinates_on_pivot(x1, y1, x2, y2, degrees, pivot_x, pivot_y):
"""주어진 box μ’Œν‘œ(x1,y1,x2,y2)λ₯Ό 주어진 μΆ• μ’Œν‘œ(pivot_x,pivot_y)에 λŒ€ν•΄ μ‹œκ³„ λ°©ν–₯으둜 νšŒμ „"""
radians = np.radians(degrees)
rotation_matrix = np.array(
[[np.cos(radians), -np.sin(radians)], [np.sin(radians), np.cos(radians)]]
)
# μƒμž μ’Œν‘œλ₯Ό 쀑심을 κΈ°μ€€μœΌλ‘œ νšŒμ „
box_coordinates = np.array(
[
[x1 - pivot_x, y1 - pivot_y],
[x2 - pivot_x, y1 - pivot_y],
[x2 - pivot_x, y2 - pivot_y],
[x1 - pivot_x, y2 - pivot_y],
]
)
rotated_box_coordinates = np.dot(box_coordinates, rotation_matrix.T)
# νšŒμ „ ν›„ μ’Œν‘œμ— 쀑심 μ’Œν‘œλ₯Ό 더해 μ›λž˜ μ’Œν‘œλ‘œ λ³€ν™˜
rotated_box_coordinates += np.array([pivot_y, pivot_x])
# λ³€ν™˜λœ μ’Œν‘œλ₯Ό μƒˆλ‘œμš΄ μƒμž μ’Œν‘œλ‘œ λ°˜ν™˜
new_x1, new_y1 = rotated_box_coordinates.min(axis=0)
new_x2, new_y2 = rotated_box_coordinates.max(axis=0)
return int(new_x1), int(new_y1), int(new_x2), int(new_y2)
def bbox_iou_torch(
box1, box2, xywh=False, GIoU=False, DIoU=False, CIoU=False, eps=1e-7
):
# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
# Get the coordinates of bounding boxes
if xywh: # transform from xywh to xyxy
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
else: # x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)
# Intersection area
inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * (
b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)
).clamp(0)
# Union Area
union = w1 * h1 + w2 * h2 - inter + eps
# IoU
iou = inter / union
if CIoU or DIoU or GIoU:
cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(
b2_x1
) # convex (smallest enclosing box) width
ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
c2 = cw**2 + ch**2 + eps # convex diagonal squared
rho2 = (
(b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2
+ (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2
) / 4 # center dist ** 2
if (
CIoU
): # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi**2) * (
torch.atan(w2 / h2) - torch.atan(w1 / h1)
).pow(2)
with torch.no_grad():
alpha = v / (v - iou + (1 + eps))
return iou - (rho2 / c2 + v * alpha) # CIoU
return iou - rho2 / c2 # DIoU
c_area = cw * ch + eps # convex area
return (
iou - (c_area - union) / c_area
) # GIoU https://arxiv.org/pdf/1902.09630.pdf
return iou # IoU
def generate_random_box(width_range, height_range):
"""
Generate random bounding box coordinates (x1, y1, x2, y2) with random width and height.
Parameters:
- width_range: Tuple representing the range of width values (min_width, max_width).
- height_range: Tuple representing the range of height values (min_height, max_height).
Returns:
- box: Tuple representing the bounding box in the format (x1, y1, x2, y2).
"""
min_width, max_width = width_range
min_height, max_height = height_range
width = np.random.randint(min_width, max_width)
height = np.random.randint(min_height, max_height)
x1 = np.random.randint(0, 100 - width)
y1 = np.random.randint(0, 100 - height)
x2 = x1 + width
y2 = y1 + height
return x1, y1, x2, y2
def mask_to_bboxes(mask, margin_rate=2, pixel_thresh=300) -> pd.DataFrame:
nlabels, segmap, stats, centroids = cv2.connectedComponentsWithStats(
image=mask, connectivity=4
)
bboxes = pd.DataFrame(
stats[1:, :], columns=["bbox_x1", "bbox_y1", "width", "height", "pixel_count"]
)
img_width, img_height = _get_width_and_height(mask)
bboxes = bboxes[bboxes["pixel_count"].ge(pixel_thresh)]
bboxes["bbox_x2"] = bboxes["bbox_x1"] + bboxes["width"]
bboxes["bbox_y2"] = bboxes["bbox_y1"] + bboxes["height"]
bboxes["margin"] = bboxes.apply(
lambda x: int(
math.sqrt(
x["pixel_count"]
* min(x["width"], x["height"])
/ (x["width"] * x["height"])
)
* margin_rate
),
axis=1,
)
bboxes["bbox_x1"] = bboxes.apply(
lambda x: max(0, x["bbox_x1"] - x["margin"]), axis=1
)
bboxes["bbox_y1"] = bboxes.apply(
lambda x: max(0, x["bbox_y1"] - x["margin"]), axis=1
)
bboxes["bbox_x2"] = bboxes.apply(
lambda x: min(img_width, x["bbox_x2"] + x["margin"]), axis=1
)
bboxes["bbox_y2"] = bboxes.apply(
lambda x: min(img_height, x["bbox_y2"] + x["margin"]), axis=1
)
bboxes = bboxes[["bbox_x1", "bbox_y1", "bbox_x2", "bbox_y2"]]
img_width, img_height = _get_width_and_height(mask)
if img_width >= img_height:
bboxes.sort_values(by=["bbox_x1", "bbox_y1"], inplace=True)
else:
bboxes.sort_values(by=["bbox_y1", "bbox_x1"], inplace=True)
return bboxes
def bbox_to_mask(bboxes: list, mask_size):
"""
Creates a mask image based on bounding box coordinates.
Args:
- bboxes: list (x_min, y_min, x_max, y_max) representing the bounding box coordinates.
- mask_size: Tuple (height, width) representing the size of the mask image to be created.
Returns:
- Mask image with the specified bounding box area filled with white.
"""
# Initialize a black mask image with the specified size
mask = np.zeros(mask_size, dtype=np.uint8)
# mask = np.zeros_like(img).astype("uint8")
for bbox in bboxes:
# Extract bounding box coordinates
x_min, y_min, x_max, y_max = bbox
# Ensure bbox coordinates are within mask bounds
x_min = max(0, x_min)
y_min = max(0, y_min)
x_max = min(mask_size[1], x_max)
y_max = min(mask_size[0], y_max)
# Fill the bounding box area with white color in the mask image
mask[y_min:y_max, x_min:x_max] = 255
return mask
def move_box_a_to_center_of_box_b(A, B):
# A와 B의 μ’Œν‘œ (l, t, r, b)
lA, tA, rA, bA = A
lB, tB, rB, bB = B
# λ°•μŠ€ A의 λ„ˆλΉ„μ™€ 높이
width_A = rA - lA
height_A = bA - tA
# λ°•μŠ€ B의 쀑심 μ’Œν‘œ
center_x_B = (lB + rB) / 2
center_y_B = (tB + bB) / 2
# λ°•μŠ€ A의 μƒˆλ‘œμš΄ μ’Œν‘œ (쀑심을 B의 μ€‘μ‹¬μœΌλ‘œ 이동)
new_lA = center_x_B - width_A / 2
new_tA = center_y_B - height_A / 2
new_rA = center_x_B + width_A / 2
new_bA = center_y_B + height_A / 2
# μƒˆλ‘œμš΄ A λ°•μŠ€μ˜ μ’Œν‘œ λ°˜ν™˜
return (new_lA, new_tA, new_rA, new_bA)
def scale_bboxes(bboxes, max_x, max_y, x_scale_factor=1.2, y_scale_factor=1.05):
# κΈ°μ‘΄ μ’Œν‘œμ—μ„œ 각 λ°•μŠ€μ˜ 쀑심 μ’Œν‘œ, λ„ˆλΉ„, 높이 계산
bboxes["cx"] = (bboxes["bbox_x1"] + bboxes["bbox_x2"]) / 2
bboxes["cy"] = (bboxes["bbox_y1"] + bboxes["bbox_y2"]) / 2
bboxes["width"] = bboxes["bbox_x2"] - bboxes["bbox_x1"]
bboxes["height"] = bboxes["bbox_y2"] - bboxes["bbox_y1"]
# 각 λ°•μŠ€μ˜ 크기λ₯Ό 1.2배둜 늘림
bboxes["new_width"] = bboxes["width"] * x_scale_factor
bboxes["new_height"] = bboxes["height"] * y_scale_factor
# μƒˆλ‘œμš΄ μ’Œν‘œ 계산
bboxes["new_x1"] = bboxes["cx"] - bboxes["new_width"] / 2
bboxes["new_y1"] = bboxes["cy"] - bboxes["new_height"] / 2
bboxes["new_x2"] = bboxes["cx"] + bboxes["new_width"] / 2
bboxes["new_y2"] = bboxes["cy"] + bboxes["new_height"] / 2
# box λ²”μœ„ μ œν•œ
bboxes["new_x1"] = bboxes["new_x1"].clip(lower=0).astype(int)
bboxes["new_y1"] = bboxes["new_y1"].clip(lower=0).astype(int)
bboxes["new_x2"] = bboxes["new_x2"].clip(upper=max_x).astype(int)
bboxes["new_y2"] = bboxes["new_y2"].clip(upper=max_y).astype(int)
# κ²°κ³Ό λ°μ΄ν„°ν”„λ ˆμž„ 생성
new_bboxes = bboxes[
["ori_content", "new_x1", "new_y1", "new_x2", "new_y2", "predicted_lang"]
].copy()
new_bboxes.columns = [
"ori_content",
"bbox_x1",
"bbox_y1",
"bbox_x2",
"bbox_y2",
"predicted_lang",
]
return new_bboxes
if __name__ == "__main__":
w_range = (100, 200)
h_range = (100, 200)
box1 = generate_random_box(w_range, h_range)
box2 = generate_random_box(w_range, h_range)
print(f"box1 coors : {box1}")
print(f"box2 coors : {box2}")
print(f"intersection area : {intersection_area(box1,box2)}")
iou = bbox_iou(box1, box2)
giou = bbox_iou(box1, box2, GIoU=True)
diou = bbox_iou(box1, box2, DIoU=True)
ciou = bbox_iou(box1, box2, CIoU=True)
print(iou, giou, diou, ciou)