Spaces:
Running
Running
import os | |
import sys | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
import argparse | |
import copy | |
from typing import Optional | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import Tensor, nn | |
from .extractor import BasicEncoder | |
from .position_encoding import build_position_encoding | |
class attnLayer(nn.Module): | |
def __init__( | |
self, | |
d_model, | |
nhead=8, | |
dim_feedforward=2048, | |
dropout=0.1, | |
activation="relu", | |
normalize_before=False, | |
): | |
super().__init__() | |
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
self.multihead_attn_list = nn.ModuleList( | |
[ | |
copy.deepcopy(nn.MultiheadAttention(d_model, nhead, dropout=dropout)) | |
for i in range(2) | |
] | |
) | |
# Implementation of Feedforward model | |
self.linear1 = nn.Linear(d_model, dim_feedforward) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_feedforward, d_model) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm2_list = nn.ModuleList( | |
[copy.deepcopy(nn.LayerNorm(d_model)) for i in range(2)] | |
) | |
self.norm3 = nn.LayerNorm(d_model) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2_list = nn.ModuleList( | |
[copy.deepcopy(nn.Dropout(dropout)) for i in range(2)] | |
) | |
self.dropout3 = nn.Dropout(dropout) | |
self.activation = _get_activation_fn(activation) | |
self.normalize_before = normalize_before | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward_post( | |
self, | |
tgt, | |
memory_list, | |
tgt_mask=None, | |
memory_mask=None, | |
tgt_key_padding_mask=None, | |
memory_key_padding_mask=None, | |
pos=None, | |
memory_pos=None, | |
): | |
q = k = self.with_pos_embed(tgt, pos) | |
tgt2 = self.self_attn( | |
q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask | |
)[0] | |
tgt = tgt + self.dropout1(tgt2) | |
tgt = self.norm1(tgt) | |
for memory, multihead_attn, norm2, dropout2, m_pos in zip( | |
memory_list, | |
self.multihead_attn_list, | |
self.norm2_list, | |
self.dropout2_list, | |
memory_pos, | |
): | |
tgt2 = multihead_attn( | |
query=self.with_pos_embed(tgt, pos), | |
key=self.with_pos_embed(memory, m_pos), | |
value=memory, | |
attn_mask=memory_mask, | |
key_padding_mask=memory_key_padding_mask, | |
)[0] | |
tgt = tgt + dropout2(tgt2) | |
tgt = norm2(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) | |
tgt = tgt + self.dropout3(tgt2) | |
tgt = self.norm3(tgt) | |
return tgt | |
def forward_pre( | |
self, | |
tgt, | |
memory, | |
tgt_mask=None, | |
memory_mask=None, | |
tgt_key_padding_mask=None, | |
memory_key_padding_mask=None, | |
pos=None, | |
memory_pos=None, | |
): | |
tgt2 = self.norm1(tgt) | |
q = k = self.with_pos_embed(tgt2, pos) | |
tgt2 = self.self_attn( | |
q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask | |
)[0] | |
tgt = tgt + self.dropout1(tgt2) | |
tgt2 = self.norm2(tgt) | |
tgt2 = self.multihead_attn( | |
query=self.with_pos_embed(tgt2, pos), | |
key=self.with_pos_embed(memory, memory_pos), | |
value=memory, | |
attn_mask=memory_mask, | |
key_padding_mask=memory_key_padding_mask, | |
)[0] | |
tgt = tgt + self.dropout2(tgt2) | |
tgt2 = self.norm3(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) | |
tgt = tgt + self.dropout3(tgt2) | |
return tgt | |
def forward( | |
self, | |
tgt, | |
memory_list, | |
tgt_mask=None, | |
memory_mask=None, | |
tgt_key_padding_mask=None, | |
memory_key_padding_mask=None, | |
pos=None, | |
memory_pos=None, | |
): | |
if self.normalize_before: | |
return self.forward_pre( | |
tgt, | |
memory_list, | |
tgt_mask, | |
memory_mask, | |
tgt_key_padding_mask, | |
memory_key_padding_mask, | |
pos, | |
memory_pos, | |
) | |
return self.forward_post( | |
tgt, | |
memory_list, | |
tgt_mask, | |
memory_mask, | |
tgt_key_padding_mask, | |
memory_key_padding_mask, | |
pos, | |
memory_pos, | |
) | |
def _get_clones(module, N): | |
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
def _get_activation_fn(activation): | |
"""Return an activation function given a string""" | |
if activation == "relu": | |
return F.relu | |
if activation == "gelu": | |
return F.gelu | |
if activation == "glu": | |
return F.glu | |
raise RuntimeError(f"activation should be relu/gelu, not {activation}.") | |
class TransDecoder(nn.Module): | |
def __init__(self, num_attn_layers, hidden_dim=128): | |
super(TransDecoder, self).__init__() | |
attn_layer = attnLayer(hidden_dim) | |
self.layers = _get_clones(attn_layer, num_attn_layers) | |
self.position_embedding = build_position_encoding(hidden_dim) | |
def forward(self, imgf, query_embed): | |
pos = self.position_embedding( | |
torch.ones(imgf.shape[0], imgf.shape[2], imgf.shape[3]).bool().cuda() | |
) # torch.Size([1, 128, 36, 36]) | |
bs, c, h, w = imgf.shape | |
imgf = imgf.flatten(2).permute(2, 0, 1) | |
# query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1) | |
pos = pos.flatten(2).permute(2, 0, 1) | |
for layer in self.layers: | |
query_embed = layer(query_embed, [imgf], pos=pos, memory_pos=[pos, pos]) | |
query_embed = query_embed.permute(1, 2, 0).reshape(bs, c, h, w) | |
return query_embed | |
class TransEncoder(nn.Module): | |
def __init__(self, num_attn_layers, hidden_dim=128): | |
super(TransEncoder, self).__init__() | |
attn_layer = attnLayer(hidden_dim) | |
self.layers = _get_clones(attn_layer, num_attn_layers) | |
self.position_embedding = build_position_encoding(hidden_dim) | |
def forward(self, imgf): | |
pos = self.position_embedding( | |
torch.ones(imgf.shape[0], imgf.shape[2], imgf.shape[3]).bool().cuda() | |
) # torch.Size([1, 128, 36, 36]) | |
bs, c, h, w = imgf.shape | |
imgf = imgf.flatten(2).permute(2, 0, 1) | |
pos = pos.flatten(2).permute(2, 0, 1) | |
for layer in self.layers: | |
imgf = layer(imgf, [imgf], pos=pos, memory_pos=[pos, pos]) | |
imgf = imgf.permute(1, 2, 0).reshape(bs, c, h, w) | |
return imgf | |
class FlowHead(nn.Module): | |
def __init__(self, input_dim=128, hidden_dim=256): | |
super(FlowHead, self).__init__() | |
self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1) | |
self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1) | |
self.relu = nn.ReLU(inplace=True) | |
def forward(self, x): | |
return self.conv2(self.relu(self.conv1(x))) | |
class UpdateBlock(nn.Module): | |
def __init__(self, hidden_dim=128): | |
super(UpdateBlock, self).__init__() | |
self.flow_head = FlowHead(hidden_dim, hidden_dim=256) | |
self.mask = nn.Sequential( | |
nn.Conv2d(hidden_dim, 256, 3, padding=1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(256, 64 * 9, 1, padding=0), | |
) | |
def forward(self, imgf, coords1): | |
mask = 0.25 * self.mask(imgf) # scale mask to balence gradients | |
dflow = self.flow_head(imgf) | |
coords1 = coords1 + dflow | |
return mask, coords1 | |
def coords_grid(batch, ht, wd): | |
coords = torch.meshgrid(torch.arange(ht), torch.arange(wd)) | |
coords = torch.stack(coords[::-1], dim=0).float() | |
return coords[None].repeat(batch, 1, 1, 1) | |
def upflow8(flow, mode="bilinear"): | |
new_size = (8 * flow.shape[2], 8 * flow.shape[3]) | |
return 8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True) | |
class OverlapPatchEmbed(nn.Module): | |
"""Image to Patch Embedding""" | |
def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] | |
self.num_patches = self.H * self.W | |
self.proj = nn.Conv2d( | |
in_chans, | |
embed_dim, | |
kernel_size=patch_size, | |
stride=stride, | |
padding=(patch_size[0] // 2, patch_size[1] // 2), | |
) | |
self.norm = nn.LayerNorm(embed_dim) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
elif isinstance(m, nn.Conv2d): | |
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
fan_out //= m.groups | |
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
def forward(self, x): | |
x = self.proj(x) | |
_, _, H, W = x.shape | |
x = x.flatten(2).transpose(1, 2) | |
x = self.norm(x) | |
return x, H, W | |
class GeoTr(nn.Module): | |
def __init__(self): | |
super(GeoTr, self).__init__() | |
self.hidden_dim = hdim = 256 | |
self.fnet = BasicEncoder(output_dim=hdim, norm_fn="instance") | |
self.encoder_block = ["encoder_block" + str(i) for i in range(3)] | |
for i in self.encoder_block: | |
self.__setattr__(i, TransEncoder(2, hidden_dim=hdim)) | |
self.down_layer = ["down_layer" + str(i) for i in range(2)] | |
for i in self.down_layer: | |
self.__setattr__(i, nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1)) | |
self.decoder_block = ["decoder_block" + str(i) for i in range(3)] | |
for i in self.decoder_block: | |
self.__setattr__(i, TransDecoder(2, hidden_dim=hdim)) | |
self.up_layer = ["up_layer" + str(i) for i in range(2)] | |
for i in self.up_layer: | |
self.__setattr__( | |
i, nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True) | |
) | |
self.query_embed = nn.Embedding(81, self.hidden_dim) | |
self.update_block = UpdateBlock(self.hidden_dim) | |
def initialize_flow(self, img): | |
N, C, H, W = img.shape | |
coodslar = coords_grid(N, H, W).to(img.device) | |
coords0 = coords_grid(N, H // 8, W // 8).to(img.device) | |
coords1 = coords_grid(N, H // 8, W // 8).to(img.device) | |
return coodslar, coords0, coords1 | |
def upsample_flow(self, flow, mask): | |
N, _, H, W = flow.shape | |
mask = mask.view(N, 1, 9, 8, 8, H, W) | |
mask = torch.softmax(mask, dim=2) | |
up_flow = F.unfold(8 * flow, [3, 3], padding=1) | |
up_flow = up_flow.view(N, 2, 9, 1, 1, H, W) | |
up_flow = torch.sum(mask * up_flow, dim=2) | |
up_flow = up_flow.permute(0, 1, 4, 2, 5, 3) | |
return up_flow.reshape(N, 2, 8 * H, 8 * W) | |
def forward(self, image1): | |
fmap = self.fnet(image1) | |
fmap = torch.relu(fmap) | |
# fmap = self.TransEncoder(fmap) | |
fmap1 = self.__getattr__(self.encoder_block[0])(fmap) | |
fmap1d = self.__getattr__(self.down_layer[0])(fmap1) | |
fmap2 = self.__getattr__(self.encoder_block[1])(fmap1d) | |
fmap2d = self.__getattr__(self.down_layer[1])(fmap2) | |
fmap3 = self.__getattr__(self.encoder_block[2])(fmap2d) | |
query_embed0 = self.query_embed.weight.unsqueeze(1).repeat(1, fmap3.size(0), 1) | |
fmap3d_ = self.__getattr__(self.decoder_block[0])(fmap3, query_embed0) | |
fmap3du_ = ( | |
self.__getattr__(self.up_layer[0])(fmap3d_).flatten(2).permute(2, 0, 1) | |
) | |
fmap2d_ = self.__getattr__(self.decoder_block[1])(fmap2, fmap3du_) | |
fmap2du_ = ( | |
self.__getattr__(self.up_layer[1])(fmap2d_).flatten(2).permute(2, 0, 1) | |
) | |
fmap_out = self.__getattr__(self.decoder_block[2])(fmap1, fmap2du_) | |
# convex upsample baesd on fmap_out | |
coodslar, coords0, coords1 = self.initialize_flow(image1) | |
coords1 = coords1.detach() | |
mask, coords1 = self.update_block(fmap_out, coords1) | |
flow_up = self.upsample_flow(coords1 - coords0, mask) | |
bm_up = coodslar + flow_up | |
return bm_up | |
## upsample tensor 'src' to have the same spatial size with tensor 'tar' | |
def _upsample_like(src, tar): | |
src = F.interpolate(src, size=tar.shape[2:], mode="bilinear", align_corners=False) | |
return src | |
class REBNCONV(nn.Module): | |
def __init__(self, in_ch=3, out_ch=3, dirate=1): | |
super(REBNCONV, self).__init__() | |
self.conv_s1 = nn.Conv2d( | |
in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate | |
) | |
self.bn_s1 = nn.BatchNorm2d(out_ch) | |
self.relu_s1 = nn.ReLU(inplace=True) | |
def forward(self, x): | |
hx = x | |
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx))) | |
return xout | |
### RSU-4 ### | |
class RSU4(nn.Module): # UNet04DRES(nn.Module): | |
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
super(RSU4, self).__init__() | |
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) | |
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) | |
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=2) | |
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) | |
def forward(self, x): | |
hx = x | |
hxin = self.rebnconvin(hx) | |
hx1 = self.rebnconv1(hxin) | |
hx = self.pool1(hx1) | |
hx2 = self.rebnconv2(hx) | |
hx = self.pool2(hx2) | |
hx3 = self.rebnconv3(hx) | |
hx4 = self.rebnconv4(hx3) | |
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1)) | |
hx3dup = _upsample_like(hx3d, hx2) | |
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) | |
hx2dup = _upsample_like(hx2d, hx1) | |
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) | |
return hx1d + hxin | |
### RSU-4F ### | |
class RSU4F(nn.Module): # UNet04FRES(nn.Module): | |
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
super(RSU4F, self).__init__() | |
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) | |
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) | |
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=2) | |
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=4) | |
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=8) | |
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=4) | |
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=2) | |
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) | |
def forward(self, x): | |
hx = x | |
hxin = self.rebnconvin(hx) | |
hx1 = self.rebnconv1(hxin) | |
hx2 = self.rebnconv2(hx1) | |
hx3 = self.rebnconv3(hx2) | |
hx4 = self.rebnconv4(hx3) | |
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1)) | |
hx2d = self.rebnconv2d(torch.cat((hx3d, hx2), 1)) | |
hx1d = self.rebnconv1d(torch.cat((hx2d, hx1), 1)) | |
return hx1d + hxin | |
class sobel_net(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.conv_opx = nn.Conv2d(1, 1, 3, bias=False) | |
self.conv_opy = nn.Conv2d(1, 1, 3, bias=False) | |
sobel_kernelx = np.array( | |
[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype="float32" | |
).reshape((1, 1, 3, 3)) | |
sobel_kernely = np.array( | |
[[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype="float32" | |
).reshape((1, 1, 3, 3)) | |
self.conv_opx.weight.data = torch.from_numpy(sobel_kernelx) | |
self.conv_opy.weight.data = torch.from_numpy(sobel_kernely) | |
for p in self.parameters(): | |
p.requires_grad = False | |
def forward(self, im): # input rgb | |
x = ( | |
0.299 * im[:, 0, :, :] + 0.587 * im[:, 1, :, :] + 0.114 * im[:, 2, :, :] | |
).unsqueeze( | |
1 | |
) # rgb2gray | |
gradx = self.conv_opx(x) | |
grady = self.conv_opy(x) | |
x = (gradx**2 + grady**2) ** 0.5 | |
x = (x - x.min()) / (x.max() - x.min()) | |
x = F.pad(x, (1, 1, 1, 1)) | |
x = torch.cat([im, x], dim=1) | |
return x | |
##### U^2-Net #### | |
class U2NET(nn.Module): | |
def __init__(self, in_ch=3, out_ch=1): | |
super(U2NET, self).__init__() | |
self.edge = sobel_net() | |
self.stage1 = RSU7(in_ch, 32, 64) | |
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage2 = RSU6(64, 32, 128) | |
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage3 = RSU5(128, 64, 256) | |
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage4 = RSU4(256, 128, 512) | |
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage5 = RSU4F(512, 256, 512) | |
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage6 = RSU4F(512, 256, 512) | |
# decoder | |
self.stage5d = RSU4F(1024, 256, 512) | |
self.stage4d = RSU4(1024, 128, 256) | |
self.stage3d = RSU5(512, 64, 128) | |
self.stage2d = RSU6(256, 32, 64) | |
self.stage1d = RSU7(128, 16, 64) | |
self.side1 = nn.Conv2d(64, out_ch, 3, padding=1) | |
self.side2 = nn.Conv2d(64, out_ch, 3, padding=1) | |
self.side3 = nn.Conv2d(128, out_ch, 3, padding=1) | |
self.side4 = nn.Conv2d(256, out_ch, 3, padding=1) | |
self.side5 = nn.Conv2d(512, out_ch, 3, padding=1) | |
self.side6 = nn.Conv2d(512, out_ch, 3, padding=1) | |
self.outconv = nn.Conv2d(6, out_ch, 1) | |
def forward(self, x): | |
x = self.edge(x) | |
hx = x | |
# stage 1 | |
hx1 = self.stage1(hx) | |
hx = self.pool12(hx1) | |
# stage 2 | |
hx2 = self.stage2(hx) | |
hx = self.pool23(hx2) | |
# stage 3 | |
hx3 = self.stage3(hx) | |
hx = self.pool34(hx3) | |
# stage 4 | |
hx4 = self.stage4(hx) | |
hx = self.pool45(hx4) | |
# stage 5 | |
hx5 = self.stage5(hx) | |
hx = self.pool56(hx5) | |
# stage 6 | |
hx6 = self.stage6(hx) | |
hx6up = _upsample_like(hx6, hx5) | |
# -------------------- decoder -------------------- | |
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1)) | |
hx5dup = _upsample_like(hx5d, hx4) | |
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1)) | |
hx4dup = _upsample_like(hx4d, hx3) | |
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1)) | |
hx3dup = _upsample_like(hx3d, hx2) | |
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1)) | |
hx2dup = _upsample_like(hx2d, hx1) | |
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1)) | |
# side output | |
d1 = self.side1(hx1d) | |
d2 = self.side2(hx2d) | |
d2 = _upsample_like(d2, d1) | |
d3 = self.side3(hx3d) | |
d3 = _upsample_like(d3, d1) | |
d4 = self.side4(hx4d) | |
d4 = _upsample_like(d4, d1) | |
d5 = self.side5(hx5d) | |
d5 = _upsample_like(d5, d1) | |
d6 = self.side6(hx6) | |
d6 = _upsample_like(d6, d1) | |
d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1)) | |
return ( | |
torch.sigmoid(d0), | |
torch.sigmoid(d1), | |
torch.sigmoid(d2), | |
torch.sigmoid(d3), | |
torch.sigmoid(d4), | |
torch.sigmoid(d5), | |
torch.sigmoid(d6), | |
) | |
### RSU-5 ### | |
class RSU5(nn.Module): # UNet05DRES(nn.Module): | |
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
super(RSU5, self).__init__() | |
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) | |
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) | |
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=2) | |
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) | |
def forward(self, x): | |
hx = x | |
hxin = self.rebnconvin(hx) | |
hx1 = self.rebnconv1(hxin) | |
hx = self.pool1(hx1) | |
hx2 = self.rebnconv2(hx) | |
hx = self.pool2(hx2) | |
hx3 = self.rebnconv3(hx) | |
hx = self.pool3(hx3) | |
hx4 = self.rebnconv4(hx) | |
hx5 = self.rebnconv5(hx4) | |
hx4d = self.rebnconv4d(torch.cat((hx5, hx4), 1)) | |
hx4dup = _upsample_like(hx4d, hx3) | |
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) | |
hx3dup = _upsample_like(hx3d, hx2) | |
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) | |
hx2dup = _upsample_like(hx2d, hx1) | |
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) | |
return hx1d + hxin | |
### RSU-6 ### | |
class RSU6(nn.Module): # UNet06DRES(nn.Module): | |
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
super(RSU6, self).__init__() | |
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) | |
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) | |
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=2) | |
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) | |
def forward(self, x): | |
hx = x | |
hxin = self.rebnconvin(hx) | |
hx1 = self.rebnconv1(hxin) | |
hx = self.pool1(hx1) | |
hx2 = self.rebnconv2(hx) | |
hx = self.pool2(hx2) | |
hx3 = self.rebnconv3(hx) | |
hx = self.pool3(hx3) | |
hx4 = self.rebnconv4(hx) | |
hx = self.pool4(hx4) | |
hx5 = self.rebnconv5(hx) | |
hx6 = self.rebnconv6(hx5) | |
hx5d = self.rebnconv5d(torch.cat((hx6, hx5), 1)) | |
hx5dup = _upsample_like(hx5d, hx4) | |
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1)) | |
hx4dup = _upsample_like(hx4d, hx3) | |
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) | |
hx3dup = _upsample_like(hx3d, hx2) | |
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) | |
hx2dup = _upsample_like(hx2d, hx1) | |
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) | |
return hx1d + hxin | |
### RSU-7 ### | |
class RSU7(nn.Module): # UNet07DRES(nn.Module): | |
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
super(RSU7, self).__init__() | |
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) | |
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) | |
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2) | |
self.rebnconv6d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) | |
def forward(self, x): | |
hx = x | |
hxin = self.rebnconvin(hx) | |
hx1 = self.rebnconv1(hxin) | |
hx = self.pool1(hx1) | |
hx2 = self.rebnconv2(hx) | |
hx = self.pool2(hx2) | |
hx3 = self.rebnconv3(hx) | |
hx = self.pool3(hx3) | |
hx4 = self.rebnconv4(hx) | |
hx = self.pool4(hx4) | |
hx5 = self.rebnconv5(hx) | |
hx = self.pool5(hx5) | |
hx6 = self.rebnconv6(hx) | |
hx7 = self.rebnconv7(hx6) | |
hx6d = self.rebnconv6d(torch.cat((hx7, hx6), 1)) | |
hx6dup = _upsample_like(hx6d, hx5) | |
hx5d = self.rebnconv5d(torch.cat((hx6dup, hx5), 1)) | |
hx5dup = _upsample_like(hx5d, hx4) | |
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1)) | |
hx4dup = _upsample_like(hx4d, hx3) | |
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) | |
hx3dup = _upsample_like(hx3d, hx2) | |
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) | |
hx2dup = _upsample_like(hx2d, hx1) | |
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) | |
return hx1d + hxin | |
class U2NETP(nn.Module): | |
def __init__(self, in_ch=3, out_ch=1): | |
super(U2NETP, self).__init__() | |
self.stage1 = RSU7(in_ch, 16, 64) | |
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage2 = RSU6(64, 16, 64) | |
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage3 = RSU5(64, 16, 64) | |
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage4 = RSU4(64, 16, 64) | |
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage5 = RSU4F(64, 16, 64) | |
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage6 = RSU4F(64, 16, 64) | |
# decoder | |
self.stage5d = RSU4F(128, 16, 64) | |
self.stage4d = RSU4(128, 16, 64) | |
self.stage3d = RSU5(128, 16, 64) | |
self.stage2d = RSU6(128, 16, 64) | |
self.stage1d = RSU7(128, 16, 64) | |
self.side1 = nn.Conv2d(64, out_ch, 3, padding=1) | |
self.side2 = nn.Conv2d(64, out_ch, 3, padding=1) | |
self.side3 = nn.Conv2d(64, out_ch, 3, padding=1) | |
self.side4 = nn.Conv2d(64, out_ch, 3, padding=1) | |
self.side5 = nn.Conv2d(64, out_ch, 3, padding=1) | |
self.side6 = nn.Conv2d(64, out_ch, 3, padding=1) | |
self.outconv = nn.Conv2d(6, out_ch, 1) | |
def forward(self, x): | |
hx = x | |
# stage 1 | |
hx1 = self.stage1(hx) | |
hx = self.pool12(hx1) | |
# stage 2 | |
hx2 = self.stage2(hx) | |
hx = self.pool23(hx2) | |
# stage 3 | |
hx3 = self.stage3(hx) | |
hx = self.pool34(hx3) | |
# stage 4 | |
hx4 = self.stage4(hx) | |
hx = self.pool45(hx4) | |
# stage 5 | |
hx5 = self.stage5(hx) | |
hx = self.pool56(hx5) | |
# stage 6 | |
hx6 = self.stage6(hx) | |
hx6up = _upsample_like(hx6, hx5) | |
# decoder | |
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1)) | |
hx5dup = _upsample_like(hx5d, hx4) | |
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1)) | |
hx4dup = _upsample_like(hx4d, hx3) | |
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1)) | |
hx3dup = _upsample_like(hx3d, hx2) | |
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1)) | |
hx2dup = _upsample_like(hx2d, hx1) | |
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1)) | |
# side output | |
d1 = self.side1(hx1d) | |
d2 = self.side2(hx2d) | |
d2 = _upsample_like(d2, d1) | |
d3 = self.side3(hx3d) | |
d3 = _upsample_like(d3, d1) | |
d4 = self.side4(hx4d) | |
d4 = _upsample_like(d4, d1) | |
d5 = self.side5(hx5d) | |
d5 = _upsample_like(d5, d1) | |
d6 = self.side6(hx6) | |
d6 = _upsample_like(d6, d1) | |
d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1)) | |
return ( | |
torch.sigmoid(d0), | |
torch.sigmoid(d1), | |
torch.sigmoid(d2), | |
torch.sigmoid(d3), | |
torch.sigmoid(d4), | |
torch.sigmoid(d5), | |
torch.sigmoid(d6), | |
) | |