Spaces:
Running
Running
import os | |
import sys | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
import argparse | |
import os | |
import warnings | |
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from DocScanner.model import DocScanner | |
from DocScanner.seg import U2NETP | |
from PIL import Image | |
warnings.filterwarnings("ignore") | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
self.msk = U2NETP(3, 1) | |
self.bm = DocScanner() # 矫正 | |
def forward(self, x): | |
msk, _1, _2, _3, _4, _5, _6 = self.msk(x) | |
msk = (msk > 0.5).float() | |
x = msk * x | |
bm = self.bm(x, iters=12, test_mode=True) | |
bm = (2 * (bm / 286.8) - 1) * 0.99 | |
return bm, msk | |
def reload_seg_model(cuda, model, path=""): | |
if not bool(path): | |
return model | |
else: | |
model_dict = model.state_dict() | |
pretrained_dict = torch.load(path, map_location=cuda) | |
pretrained_dict = { | |
k[6:]: v for k, v in pretrained_dict.items() if k[6:] in model_dict | |
} | |
model_dict.update(pretrained_dict) | |
model.load_state_dict(model_dict) | |
return model | |
def reload_rec_model(cuda, model, path=""): | |
if not bool(path): | |
return model | |
else: | |
model_dict = model.state_dict() | |
pretrained_dict = torch.load(path, map_location=cuda) | |
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} | |
model_dict.update(pretrained_dict) | |
model.load_state_dict(model_dict) | |
return model |