import time import numpy as np import pytesseract from PIL import Image pytesseract.get_tesseract_version() def Levenshtein_Distance(str1, str2): matrix = [[i + j for j in range(len(str2) + 1)] for i in range(len(str1) + 1)] for i in range(1, len(str1) + 1): for j in range(1, len(str2) + 1): if str1[i - 1] == str2[j - 1]: d = 0 else: d = 1 matrix[i][j] = min( matrix[i - 1][j] + 1, matrix[i][j - 1] + 1, matrix[i - 1][j - 1] + d ) return matrix[len(str1)][len(str2)] def cal_cer_ed(path_ours, tail="_rec"): print(path_ours, "start") print(f"started at {time.strftime('%H:%M:%S')}") path_gt = "./scan/" N = 196 cer1 = [] ed1 = [] check = [0 for _ in range(N + 1)] # img index in UDIR test set for OCR evaluation lis = [ 2, 5, 17, 19, 20, 23, 31, 37, 38, 39, 40, 41, 43, 45, 47, 48, 51, 54, 57, 60, 61, 62, 64, 65, 67, 68, 70, 75, 76, 77, 78, 80, 81, 83, 84, 85, 87, 88, 90, 91, 93, 96, 99, 100, 101, 102, 103, 104, 105, 134, 137, 138, 140, 150, 151, 155, 158, 162, 163, 164, 165, 166, 169, 170, 172, 173, 175, 177, 178, 182, ] for i in range(1, N): if i not in lis: continue gt = Image.open(path_gt + str(i) + ".png") img1 = Image.open(path_ours + str(i) + tail) content_gt = pytesseract.image_to_string(gt) content1 = pytesseract.image_to_string(img1) l1 = Levenshtein_Distance(content_gt, content1) ed1.append(l1) cer1.append(l1 / len(content_gt)) check[i] = cer1[-1] CER = np.mean(cer1) ED = np.mean(ed1) print(f"finished at {time.strftime('%H:%M:%S')}") return [path_ours, CER, ED]