Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,891 Bytes
6a79837 6faeba1 6a79837 6faeba1 6a79837 6faeba1 6a79837 6faeba1 6a79837 6faeba1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import argparse
import json
import os
import numpy as np
import pandas as pd
import torch
from tqdm import tqdm
from Utility.storage_config import MODELS_DIR
def approximate_and_inject_language_embeddings(model_path, df, iso_lookup, min_n_langs=5, max_n_langs=25, threshold_percentile=50):
# load pretrained language_embeddings
model = torch.load(model_path, map_location="cpu")
lang_embs = model["model"]["encoder.language_embedding.weight"]
features_per_closest_lang = 2
# for combined, df has up to 5 features (if containing individual distances) per closest lang + 1 target lang column
if "combined_dist_0" in df.columns:
if "map_dist_0" in df.columns:
features_per_closest_lang += 1
if "asp_dist_0" in df.columns:
features_per_closest_lang += 1
if "tree_dist_0" in df.columns:
features_per_closest_lang += 1
n_closest = len(df.columns) // features_per_closest_lang
distance_type = "combined"
# else, df has 2 features per closest lang + 1 target lang column
else:
n_closest = len(df.columns) // features_per_closest_lang
if "map_dist_0" in df.columns:
distance_type = "map"
elif "tree_dist_0" in df.columns:
distance_type = "tree"
elif "asp_dist_0" in df.columns:
distance_type = "asp"
elif "learned_dist_0" in df.columns:
distance_type = "learned"
else:
distance_type = "random"
# get relevant columns
closest_lang_columns = [f"closest_lang_{i}" for i in range(n_closest)]
closest_dist_columns = [f"{distance_type}_dist_{i}" for i in range(n_closest)]
closest_lang_columns = closest_lang_columns[:max_n_langs]
closest_dist_columns = closest_dist_columns[:max_n_langs]
assert df[closest_dist_columns[-1]].isna().sum().sum() == 0
# get threshold based on distance of a certain percentile of the furthest language across all samples
threshold = np.percentile(df[closest_dist_columns[-1]], threshold_percentile)
print(f"threshold: {threshold:.4f}")
for row in tqdm(df.itertuples(), total=df.shape[0], desc="Approximating language embeddings"):
avg_emb = torch.zeros([32]) # If you change the size of the language embedding in the model, you need to change the size here as well. TODO automate this
dists = [getattr(row, d) for i, d in enumerate(closest_dist_columns) if i < min_n_langs or getattr(row, d) < threshold]
langs = [getattr(row, l) for l in closest_lang_columns[:len(dists)]]
for lang in langs:
lang_emb = lang_embs[iso_lookup[-1][str(lang)]]
avg_emb += lang_emb
avg_emb /= len(langs) # normalize
lang_embs[iso_lookup[-1][str(row.target_lang)]] = avg_emb
# inject language embeddings into Toucan model and save
model["model"]["encoder.language_embedding.weight"] = lang_embs
modified_model_path = model_path.split(".")[0] + "_zeroshot_lang_embs.pt"
torch.save(model, modified_model_path)
print(f"Replaced unsupervised language embeddings with zero-shot approximations.\nSaved modified model to {modified_model_path}")
if __name__ == "__main__":
default_model_path = os.path.join(MODELS_DIR, "ToucanTTS_Meta", "best.pt") # MODELS_DIR must be absolute path, the relative path will fail at this location
default_csv_path = "distance_datasets/dataset_learned_top30.csv"
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default=default_model_path, help="path of the model for which the language embeddings should be modified")
parser.add_argument("--dataset_path", type=str, default=default_csv_path, help="path to distance dataset CSV")
parser.add_argument("--min_n_langs", type=int, default=5, help="minimum amount of languages used for averaging")
parser.add_argument("--max_n_langs", type=int, default=25, help="maximum amount of languages used for averaging")
parser.add_argument("--threshold_percentile", type=int, default=50, help="percentile of the furthest used languages \
used as cutoff threshold (no langs >= the threshold are used for averaging)")
args = parser.parse_args()
ISO_LOOKUP_PATH = "iso_lookup.json"
with open(ISO_LOOKUP_PATH, "r") as f:
iso_lookup = json.load(f) # iso_lookup[-1] = iso2id mapping
# load language distance dataset
distance_df = pd.read_csv(args.dataset_path, sep="|")
approximate_and_inject_language_embeddings(model_path=args.model_path,
df=distance_df,
iso_lookup=iso_lookup,
min_n_langs=args.min_n_langs,
max_n_langs=args.max_n_langs,
threshold_percentile=args.threshold_percentile)
|