from collections import OrderedDict import torch from torchaudio.transforms import Resample from Preprocessing.Codec.encodec import EnCodec class CodecAudioPreprocessor: def __init__(self, input_sr, output_sr=16000, device="cpu", path_to_model="Preprocessing/Codec/encodec_16k_320d.pt"): self.device = device self.input_sr = input_sr self.output_sr = output_sr self.resample = Resample(orig_freq=input_sr, new_freq=output_sr).to(self.device) self.model = EnCodec(n_filters=32, D=512) parameter_dict = torch.load(path_to_model, map_location="cpu") new_state_dict = OrderedDict() for k, v in parameter_dict.items(): name = k[7:] new_state_dict[name] = v self.model.load_state_dict(new_state_dict) remove_encodec_weight_norm(self.model) self.model.eval() self.model.to(device) def resample_audio(self, audio, current_sampling_rate): if current_sampling_rate != self.input_sr: print("warning, change in sampling rate detected. If this happens too often, consider re-ordering the audios so that the sampling rate stays constant for multiple samples") self.resample = Resample(orig_freq=current_sampling_rate, new_freq=self.output_sr).to(self.device) self.input_sr = current_sampling_rate if type(audio) != torch.tensor and type(audio) != torch.Tensor: audio = torch.tensor(audio, device=self.device, dtype=torch.float32) audio = self.resample(audio.float().to(self.device)) return audio @torch.inference_mode() def audio_to_codebook_indexes(self, audio, current_sampling_rate): if current_sampling_rate != self.output_sr: audio = self.resample_audio(audio, current_sampling_rate) elif type(audio) != torch.tensor and type(audio) != torch.Tensor: audio = torch.tensor(audio, device=self.device, dtype=torch.float32) return self.model.encode(audio.float().unsqueeze(0).unsqueeze(0).to(self.device)).squeeze() @torch.inference_mode() def indexes_to_audio(self, codebook_indexes): return self.model.decode(codebook_indexes).squeeze() def remove_encodec_weight_norm(model): from Preprocessing.Codec.seanet import SConv1d from Preprocessing.Codec.seanet import SConvTranspose1d from Preprocessing.Codec.seanet import SEANetResnetBlock from torch.nn.utils import remove_weight_norm encoder = model.encoder.model for key in encoder._modules: if isinstance(encoder._modules[key], SEANetResnetBlock): remove_weight_norm(encoder._modules[key].shortcut.conv.conv) block_modules = encoder._modules[key].block._modules for skey in block_modules: if isinstance(block_modules[skey], SConv1d): remove_weight_norm(block_modules[skey].conv.conv) elif isinstance(encoder._modules[key], SConv1d): remove_weight_norm(encoder._modules[key].conv.conv) decoder = model.decoder.model for key in decoder._modules: if isinstance(decoder._modules[key], SEANetResnetBlock): remove_weight_norm(decoder._modules[key].shortcut.conv.conv) block_modules = decoder._modules[key].block._modules for skey in block_modules: if isinstance(block_modules[skey], SConv1d): remove_weight_norm(block_modules[skey].conv.conv) elif isinstance(decoder._modules[key], SConvTranspose1d): remove_weight_norm(decoder._modules[key].convtr.convtr) elif isinstance(decoder._modules[key], SConv1d): remove_weight_norm(decoder._modules[key].conv.conv) if __name__ == '__main__': import soundfile import time with torch.inference_mode(): test_audio1 = "../audios/ad01_0000.wav" test_audio2 = "../audios/angry.wav" test_audio3 = "../audios/ry.wav" test_audio4 = "../audios/test.wav" ap = CodecAudioPreprocessor(input_sr=1, path_to_model="Codec/encodec_16k_320d.pt") wav, sr = soundfile.read(test_audio1) indexes_1 = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr) wav, sr = soundfile.read(test_audio2) indexes_2 = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr) wav, sr = soundfile.read(test_audio3) indexes_3 = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr) wav, sr = soundfile.read(test_audio4) indexes_4 = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr) print(indexes_4) t0 = time.time() audio1 = ap.indexes_to_audio(indexes_1) audio2 = ap.indexes_to_audio(indexes_2) audio3 = ap.indexes_to_audio(indexes_3) audio4 = ap.indexes_to_audio(indexes_4) t1 = time.time() print(audio1.shape) print(audio2.shape) print(audio3.shape) print(audio4.shape) print(t1 - t0) soundfile.write(file=f"../audios/1_reconstructed_in_{t1 - t0}_encodec.wav", data=audio1, samplerate=16000) soundfile.write(file=f"../audios/2_reconstructed_in_{t1 - t0}_encodec.wav", data=audio2, samplerate=16000) soundfile.write(file=f"../audios/3_reconstructed_in_{t1 - t0}_encodec.wav", data=audio3, samplerate=16000) soundfile.write(file=f"../audios/4_reconstructed_in_{t1 - t0}_encodec.wav", data=audio4, samplerate=16000)