Spaces:
Runtime error
Runtime error
File size: 19,512 Bytes
4d20c2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
# Modified from:
# VQGAN: https://github.com/CompVis/taming-transformers/blob/master/taming/modules/transformer/mingpt.py
# DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
# nanoGPT: https://github.com/karpathy/nanoGPT/blob/master/model.py
# llama: https://github.com/facebookresearch/llama/blob/main/llama/model.py
# gpt-fast: https://github.com/pytorch-labs/gpt-fast/blob/main/model.py
# PixArt: https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
from dataclasses import dataclass
from typing import Optional, List
import torch
import torch.nn as nn
from torch.nn import functional as F
def find_multiple(n: int, k: int):
if n % k == 0:
return n
return n + k - (n % k)
@dataclass
class ModelArgs:
dim: int = 4096
n_layer: int = 32
n_head: int = 32
n_kv_head: Optional[int] = None
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
ffn_dim_multiplier: Optional[float] = None
rope_base: float = 10000
norm_eps: float = 1e-5
initializer_range: float = 0.02
token_dropout_p: float = 0.1
attn_dropout_p: float = 0.0
resid_dropout_p: float = 0.1
ffn_dropout_p: float = 0.1
drop_path_rate: float = 0.0
num_classes: int = 1000
caption_dim: int = 2048
class_dropout_prob: float = 0.1
model_type: str = 'c2i'
vocab_size: int = 16384
cls_token_num: int = 1
block_size: int = 256
max_batch_size: int = 32
max_seq_len: int = 2048
#################################################################################
# Embedding Layers for Class Labels #
#################################################################################
class LabelEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels).unsqueeze(1)
return embeddings
#################################################################################
# Embedding Layers for Text Feature #
#################################################################################
class CaptionEmbedder(nn.Module):
"""
Embeds text caption into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, in_channels, hidden_size, uncond_prob, token_num=120):
super().__init__()
self.cap_proj = MLP(in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size)
self.register_buffer("uncond_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels ** 0.5))
self.uncond_prob = uncond_prob
def token_drop(self, caption, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(caption.shape[0], device=caption.device) < self.uncond_prob
else:
drop_ids = force_drop_ids == 1
caption = torch.where(drop_ids[:, None, None], self.uncond_embedding, caption)
return caption
def forward(self, caption, train, force_drop_ids=None):
use_dropout = self.uncond_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
caption = self.token_drop(caption, force_drop_ids)
embeddings = self.cap_proj(caption)
return embeddings
class MLP(nn.Module):
def __init__(self, in_features, hidden_features, out_features):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features, bias=False)
self.act = nn.GELU(approximate='tanh')
self.fc2 = nn.Linear(hidden_features, out_features, bias=False)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return x
#################################################################################
# GPT Model #
#################################################################################
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
class FeedForward(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
hidden_dim = 4 * config.dim
hidden_dim = int(2 * hidden_dim / 3)
# custom dim factor multiplier
if config.ffn_dim_multiplier is not None:
hidden_dim = int(config.ffn_dim_multiplier * hidden_dim)
hidden_dim = find_multiple(hidden_dim, config.multiple_of)
self.w1 = nn.Linear(config.dim, hidden_dim, bias=False)
self.w3 = nn.Linear(config.dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, config.dim, bias=False)
self.ffn_dropout = nn.Dropout(config.ffn_dropout_p)
def forward(self, x):
return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
class KVCache(nn.Module):
def __init__(self, max_batch_size, max_seq_length, n_head, head_dim, dtype):
super().__init__()
cache_shape = (max_batch_size, n_head, max_seq_length, head_dim)
self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype))
self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype))
def update(self, input_pos, k_val, v_val):
# input_pos: [S], k_val: [B, H, S, D]
assert input_pos.shape[0] == k_val.shape[2]
k_out = self.k_cache
v_out = self.v_cache
k_out[:, :, input_pos] = k_val
v_out[:, :, input_pos] = v_val
return k_out, v_out
class Attention(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
assert config.dim % config.n_head == 0
self.dim = config.dim
self.head_dim = config.dim // config.n_head
self.n_head = config.n_head
self.n_kv_head = config.n_kv_head if config.n_kv_head is not None else config.n_head
total_kv_dim = (self.n_head + 2 * self.n_kv_head) * self.head_dim
# key, query, value projections for all heads, but in a batch
self.wqkv = nn.Linear(config.dim, total_kv_dim, bias=False)
self.wo = nn.Linear(config.dim, config.dim, bias=False)
self.kv_cache = None
# regularization
self.attn_dropout_p = config.attn_dropout_p
self.resid_dropout = nn.Dropout(config.resid_dropout_p)
def forward(
self, x: torch.Tensor, freqs_cis: torch.Tensor = None,
input_pos: Optional[torch.Tensor] = None,
mask: Optional[torch.Tensor] = None
):
bsz, seqlen, _ = x.shape
kv_size = self.n_kv_head * self.head_dim
xq, xk, xv = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)
xq = xq.view(bsz, seqlen, self.n_head, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_kv_head, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_kv_head, self.head_dim)
xq = apply_rotary_emb(xq, freqs_cis)
xk = apply_rotary_emb(xk, freqs_cis)
xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv))
if self.kv_cache is not None:
keys, values = self.kv_cache.update(input_pos, xk, xv)
else:
keys, values = xk, xv
keys = keys.repeat_interleave(self.n_head // self.n_kv_head, dim=1)
values = values.repeat_interleave(self.n_head // self.n_kv_head, dim=1)
output = F.scaled_dot_product_attention(
xq, keys, values,
attn_mask=mask,
is_causal=True if mask is None else False, # is_causal=False is for KV cache
dropout_p=self.attn_dropout_p if self.training else 0)
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)
output = self.resid_dropout(self.wo(output))
return output
class TransformerBlock(nn.Module):
def __init__(self, config: ModelArgs, drop_path: float):
super().__init__()
self.attention = Attention(config)
self.feed_forward = FeedForward(config)
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
def forward(
self, x: torch.Tensor, freqs_cis: torch.Tensor, start_pos: int, mask: Optional[torch.Tensor] = None):
h = x + self.attention(self.attention_norm(x), freqs_cis, start_pos, mask)
out = h + self.feed_forward(self.ffn_norm(h))
return out
class Transformer(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.config = config
self.vocab_size = config.vocab_size
self.n_layer = config.n_layer
self.block_size = config.block_size
self.num_classes = config.num_classes
self.model_type = config.model_type
self.cls_token_num = config.cls_token_num
if self.model_type == 'c2i':
self.cls_embedding = LabelEmbedder(config.num_classes, config.dim, config.class_dropout_prob)
elif self.model_type == 't2i':
self.cls_embedding = CaptionEmbedder(config.caption_dim, config.dim, config.class_dropout_prob)
else:
raise Exception("please check model type")
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
self.tok_dropout = nn.Dropout(config.token_dropout_p)
# transformer blocks
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.n_layer)]
self.layers = torch.nn.ModuleList()
for layer_id in range(config.n_layer):
self.layers.append(TransformerBlock(config, dpr[layer_id]))
# output layer
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
self.output = nn.Linear(config.dim, config.vocab_size, bias=False)
# 2d rotary pos embedding
grid_size = int(self.block_size ** 0.5)
assert grid_size * grid_size == self.block_size
self.freqs_cis = precompute_freqs_cis_2d(grid_size, self.config.dim // self.config.n_head, self.config.rope_base, self.cls_token_num)
# KVCache
self.max_batch_size = -1
self.max_seq_length = -1
self.initialize_weights()
def initialize_weights(self):
# Initialize nn.Linear and nn.Embedding
self.apply(self._init_weights)
# Zero-out output layers:
nn.init.constant_(self.output.weight, 0)
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
def setup_caches(self, max_batch_size, max_seq_length, dtype):
# if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size:
# return
head_dim = self.config.dim // self.config.n_head
max_seq_length = find_multiple(max_seq_length, 8)
self.max_seq_length = max_seq_length
self.max_batch_size = max_batch_size
for b in self.layers:
b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_head, head_dim, dtype)
causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool))
self.causal_mask = causal_mask.unsqueeze(0).repeat(self.max_batch_size, 1, 1)
grid_size = int(self.config.block_size ** 0.5)
assert grid_size * grid_size == self.block_size
self.freqs_cis = precompute_freqs_cis_2d(grid_size, self.config.dim // self.config.n_head, self.config.rope_base, self.cls_token_num)
def forward(
self,
idx: torch.Tensor,
cond_idx: torch.Tensor, # cond_idx_or_embed
input_pos: Optional[torch.Tensor] = None,
targets: Optional[torch.Tensor] = None,
mask: Optional[torch.Tensor] = None,
valid: Optional[torch.Tensor] = None,
):
if idx is not None and cond_idx is not None: # training or naive inference
cond_embeddings = self.cls_embedding(cond_idx, train=self.training)[:,:self.cls_token_num]
token_embeddings = self.tok_embeddings(idx)
token_embeddings = torch.cat((cond_embeddings, token_embeddings), dim=1)
h = self.tok_dropout(token_embeddings)
self.freqs_cis = self.freqs_cis.to(h.device)
else:
if cond_idx is not None: # prefill in inference
token_embeddings = self.cls_embedding(cond_idx, train=self.training)[:,:self.cls_token_num]
else: # decode_n_tokens(kv cache) in inference
token_embeddings = self.tok_embeddings(idx)
bs = token_embeddings.shape[0]
mask = self.causal_mask[:bs, None, input_pos]
h = self.tok_dropout(token_embeddings)
self.freqs_cis = self.freqs_cis
if self.training:
freqs_cis = self.freqs_cis[:token_embeddings.shape[1]]
else:
freqs_cis = self.freqs_cis[input_pos]
# transformer blocks
for layer in self.layers:
h = layer(h, freqs_cis, input_pos, mask)
# output layers
h = self.norm(h)
logits = self.output(h).float()
if self.training:
logits = logits[:, self.cls_token_num - 1:].contiguous()
# if we are given some desired targets also calculate the loss
loss = None
if valid is not None:
loss_all = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), reduction='none')
valid_all = valid[:,None].repeat(1, targets.shape[1]).view(-1)
loss = (loss_all * valid_all).sum() / max(valid_all.sum(), 1)
elif targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
def get_fsdp_wrap_module_list(self) -> List[nn.Module]:
return list(self.layers)
#################################################################################
# Rotary Positional Embedding Functions #
#################################################################################
# https://github.com/pytorch-labs/gpt-fast/blob/main/model.py
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000, cls_token_num=120):
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs) # (seq_len, head_dim // 2)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) # (cls_token_num+seq_len, head_dim // 2, 2)
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+seq_len, head_dim // 2, 2)
return cond_cache
def precompute_freqs_cis_2d(grid_size: int, n_elem: int, base: int = 10000, cls_token_num=120):
# split the dimension into half, one for x and one for y
half_dim = n_elem // 2
freqs = 1.0 / (base ** (torch.arange(0, half_dim, 2)[: (half_dim // 2)].float() / half_dim))
t = torch.arange(grid_size, device=freqs.device)
freqs = torch.outer(t, freqs) # (grid_size, head_dim // 2)
freqs_grid = torch.concat([
freqs[:, None, :].expand(-1, grid_size, -1),
freqs[None, :, :].expand(grid_size, -1, -1),
], dim=-1) # (grid_size, grid_size, head_dim // 2)
cache_grid = torch.stack([torch.cos(freqs_grid), torch.sin(freqs_grid)], dim=-1) # (grid_size, grid_size, head_dim // 2, 2)
cache = cache_grid.flatten(0, 1)
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+grid_size**2, head_dim // 2, 2)
return cond_cache
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor):
# x: (bs, seq_len, n_head, head_dim)
# freqs_cis (seq_len, head_dim // 2, 2)
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) # (bs, seq_len, n_head, head_dim//2, 2)
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) # (1, seq_len, 1, head_dim//2, 2)
x_out2 = torch.stack([
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
], dim=-1)
x_out2 = x_out2.flatten(3)
return x_out2.type_as(x)
#################################################################################
# GPT Configs #
#################################################################################
### text-conditional
def GPT_7B(**kwargs):
return Transformer(ModelArgs(n_layer=32, n_head=32, dim=4096, **kwargs)) # 6.6B
def GPT_3B(**kwargs):
return Transformer(ModelArgs(n_layer=24, n_head=32, dim=3200, **kwargs)) # 3.1B
def GPT_1B(**kwargs):
return Transformer(ModelArgs(n_layer=22, n_head=32, dim=2048, **kwargs)) # 1.2B
### class-conditional
def GPT_XXXL(**kwargs):
return Transformer(ModelArgs(n_layer=48, n_head=40, dim=2560, **kwargs)) # 3.9B
def GPT_XXL(**kwargs):
return Transformer(ModelArgs(n_layer=48, n_head=24, dim=1536, **kwargs)) # 1.4B
def GPT_XL(**kwargs):
return Transformer(ModelArgs(n_layer=36, n_head=20, dim=1280, **kwargs)) # 775M
def GPT_L(**kwargs):
return Transformer(ModelArgs(n_layer=24, n_head=16, dim=1024, **kwargs)) # 343M
def GPT_B(**kwargs):
return Transformer(ModelArgs(n_layer=12, n_head=12, dim=768, **kwargs)) # 111M
GPT_models = {
'GPT-B': GPT_B, 'GPT-L': GPT_L, 'GPT-XL': GPT_XL, 'GPT-XXL': GPT_XXL, 'GPT-XXXL': GPT_XXXL,
'GPT-1B': GPT_1B, 'GPT-3B': GPT_3B, 'GPT-7B': GPT_7B,
} |